Venous Thromboembolic Disease Long Term Management

Thomas DeLoughery, MD MACP FAWM Oregon Health & Sciences University

DISCLOSURE

Relevant Financial Relationship(s) Speaker Bureau - None Consultant/Research – none

Author – UpToDate (Iron)

Your patients been diagnosis with a thrombosis – now what?

Post-Thrombotic Syndrome

- Common complication of DVT
- 20-50% of all patients
- 5-10% severe
- Can be disabling

Blood, 19 November 2009, Vol. 114:4624-4631.

PTS: Risk Factors

- Common femoral or iliac vein thrombosis
- Previous DVT
- High BMI
- Older age
- Inadequate initial anticoagulation

Prevention

- Prevent thrombosis!
- Keep the patient active!
- DOACs
 - 4 studies show less PTS
- Stockings controversial but...

Compression Stockings

- Apply within 24 hours
- 20-30mmHg
- Wear at least 6 months
- Replace every 3 months
- Apply in bed first thing

Therapy of PTS

- Compression stockings
 –Knee high
- Leg elevation
- Horse chestnut seed extract
 BID for a 12 weeks trial
- Treat neuropathic pain
- Leg massage
- Venous stenting (?)

Post-PE Syndrome?

- 50% of patients with PE report dyspnea 6 months later
- 20-70% state health status worse
- Seemingly not related to clot residual or scarring
- Chest pain/discomfort very common
- Warn/reassure patients
- "Cardiac" rehab

Duration of Therapy Idiopathic versus provoked thrombosis is the biggest determinant of risk of recurrent thrombosis

Duration of Therapy

- Not all thrombosis are the same
- Can stratify patients by:
 - -Site of thrombosis
 - -Circumstances of thrombosis
 - Most important!
 - Presence of hypercoagulable states

Superficial Thrombophlebitis

- Very common
- Strong inflammatory component
- Wide range of therapeutic options

STP: LMWH

STTEPS

- Symptomatic STP
- 8-12 day of therapy
 - Placebo: 30.6% (3.6%)
 - NSAIA: 14.9% (2.1%)
 - 40 mg LMWH: 8.3% (0.9%)
 - 1.5 mg/kg LMWH: 6.9% (1.0%)

Vesalio Study Group

- Greater saphenous vein STP
- One month of therapy
 - Prophylactic dose: 7.2%
 - Treatment dose: 7.2%

Superficial Thrombophlebitis

- Fondaparinux 2.5 mg/day x 45 days
 - -Endpoint: F: 0.9% P: 5.9%
 - -DVT/PE F: 0.2% P: 1.5%
 - -No difference in bleeding
 - Need to treat 88 patients to prevent one DVT/PE

-NEJM 363:1222-32, 2010

Decousus H et al. N Engl J Med 2010;363:1222-1232

Superficial Thrombophlebitis

- Small and distal: NSAIA and heat
- Painful, large (> 5cm) or greater saphenous vein
 - At least 10 days of prophylactic dose LMWH or fondaparinux
- Role of DOAC uncertain
 –? DVT rate

- Mechanical defects
 - -Catheter
 - PICC 3-5%
 - -Local venous trauma
- Prophylaxis ineffective
- Low risk of serious sequela

- Therapy: PICC Catheter
 - Key is removing catheter
 - No new one for at least 10 days
 - Benefit of anticoagulation uncertain

-25% rate of bleeding

 Remember many are superficial thrombosis

- Therapy: Non-PICC Catheter
 - Line can be removed
 - -Assess need for anticoagulation
 - Line cannot be removed
 - –3 months anticoagulation
 –High rates of serious bleeding

- "Spontaneous"
 - 3 months anticoagulation
 - Look for underlying vascular defects
 - Consider thrombolytic
 therapy

-~75% with underlying lesions

Calf Vein Thrombosis

- High risk of progression
 Up to 10% progression
 PE rate 2-3%
- 12 weeks therapy for most patients

Calf Vein Thrombosis Therapy

Anticoagulation No anticoagulation Odds Ratio Odds Ratio Study or Subgroup Events Total Events Total Weight M-H, Random,95% CI M-H, Random,95% CI Randomized controlled trials Barrellier, 2010 [44] 3 144 9 141 6.8% 0.31 [0.08, 1.18] Homer, 2010 [28] 0 35 4 35 2.1% 0.05 [0.00, 0.94] 141 Lagerstedt, 1985 [29] 0 23 8 2.8 2.2% 0.05 [0.00, 0.94] 141 Schwarz, 2010 [8] 2 54 2 53 4.0% 0.98 [0.13, 7.23] Subtotal (95% CI) 378 387 22.4% 0.37 [0.17, 0.79] 0.45 [0.08, 2.52] Total events 9 9.99, d.1 = 4 (P = 0.41); l ² = 0% 550 [1.09, 27.64] 141 24 309 9.6% 0.53 [0.21, 1.32] Dorr, 2007 [41] 0 20 0 25 Not estimable 142 143 2.0% 0.45 [0.24, 0.70] 144 143 2.0% 0.52 [0.15,		Antiona	gulation			_	Odda Datia	
Randomized controlled trials Barrellier, 2010 [44] 3 141 6.8% 0.31 [0.08, 1.18] Barrellier, 2010 [44] 3 141 6.8% 0.31 [0.08, 1.18] Lagerstedt, 1985 [29] 0 23 8 2.2% 0.010 [0.01, 1.90] Lagerstedt, 1985 [29] 2 2 53 0.05 [0.00, 0.24] Sidbtotal (95% CI) 378 387 22.4% 0.37 [0.17, 0.79] Cohort studies Brateanu, 2016 [43] 6 141 2.4 (P = 0.01) Cohort studies Brateanu, 2016 [43] 6 141 1.30 7.4% 0.55 [0.19, 27.64] Latropoulos, 2002 [39] 2 19 6 9 0.31 141 2.257 (P = 0.01) Cohort studies 16.20 16.20	Obudu au Outerran		-					
Barrellier, 2010 [44] 3 144 9 141 6.8% 0.31 [0.08, 1.18] Horner, 2010 [28] 0 35 4 35 2.1% 0.10 [0.01, 1.90] Lagerstedt, 1985 [29] 0 23 8 28 2.2% 0.55 [0.00, 0.94] Righin, 2016 [27] 4 122 8 130 7.4% 0.52 [0.15, 1.76] Schwarz, 2010 [8] 2 54 2 53 4.0% 0.88 [0.13, 7.23] Subtotal (95% CI) 378 387 22.4% 0.37 [0.17, 0.79] Total events 80 13 23 38 169 7.2% 0.53 [0.21, 1.32] Not estimable Brateanu, 2016 [43] 6 141 24 309 9.6% 0.53 [0.21, 1.32] Not estimable Brateanu, 2016 [43] 6 141 24 309 9.6% 0.53 [0.21, 1.32] Dorr, 2007 [41] 0 20 0 25 Not estimable Brateanu, 2016 [43] 6 141 24 309 9.6% 0.53 [0.21, 1.32] Labropoulos, 2002 [39] 2 19 6 29 4.9% 0.45 [0.08, 27.64] Labropoulos, 2002 [39] 3 23 38 169 7.2% 0.52 [0.15, 1.83] Masuda, 1998 [31] 0 28 2 26 2.0% 0.17 [0.01, 3.76] Pellegrini, 1993 [42] 0 12 4 13 2.0% 0.08 [0.00, 1.77] Pellegrini, 1993 [42] 0 12 4 73 2.1% 0.68 [0.00, 1.77] Pellegrini, 1993 [34] 0 12 4 73 2.1% 0.68 [0.00, 0.23] Sharpe, 2002 [38] 0 12 4 73 2.1% 0.63 [0.00, 0.23] Sharpe, 2002 [38] 0 12 4 73 2.1% 0.63 [0.00, 0.23] Sharpe, 2002 [38] 0 12 4 73 2.1% 0.64 [0.11, 2.77] Subtotal (95% CI) 989 1182 77.6% 0.55 [0.31, 0.97] Total events 80 157 Heterogeneity: $c^2 = 0.36; y^2 = 30.26, d.f. = 17 (P = 0.02); P^2 = 53\%$ Text for overall effect: Z = 2.57 (P = 0.003) 0.01 0.1 1 10 100				Events	Total	weight	M-H, Random,95% CI	M-H, Random,95% CI
Homer, 2010 [28] 0 35 4 35 2.1% 0.10 [0.01, 1.90] Lagerstedt, 1985 [29] 0 23 8 28 2.2% 0.05 [0.00, 0.94] Inghini, 2016 [27] 4 122 8 130 7.4% 0.52 [0.15, 1.76] Schwarz, 2010 [8] 2 54 2 53 4.0% 0.88 [0.13, 7.23] Subtotal (95% CI) 378 387 22.4% 0.37 [0.17, 0.79] Total events 9 31 Heterogeneity: $r^2 = 0.00$; $\chi^2 = 3.99$, d.f. = 4 ($P = 0.41$); $l^2 = 0\%$ Test for overall effect: $Z = 2.57$ ($P = 0.01$) Cohort studies Brateanu, 2016 [43] 6 141 24 309 9.6% 0.53 [0.21, 1.32] Dorr, 2007 [41] 0 20 0 25 Not estimable Kazmers, 1999 [37] 9 36 2 35 5.4% 5.50 [1.09, 27.64] Labropoulos, 2002 [39] 2 19 6 29 4.9% 0.45 [0.08, 2.52] Lautz, 2010 [40] 36 236 36 119 12.8% 0.41 [0.24, 0.70] Lohr, 1995 [36] 3 23 38 169 7.2% 0.52 [0.15, 1.83] Masuda, 1998 [31] 0 28 2 26 2.0% 0.17 [0.01, 3.76] Pellegrini, 1993 [42] 0 12 4 13 2.0% 0.08 [0.00, 1.77] Schwarz, 2001 [30] 1 52 13 32 3.7% 0.03 [0.00, 0.23] Schwarz, 2001 [30] 1 52 13 32 3.7% 0.03 [0.00, 0.23] Schwarz, 2002 [38] 0 12 4 73 2.1% 0.62 [0.03, 12.20] Solis, 1992 [34] 3 14 2 28 4.2% 3.55 [0.52, 42.66] Subtotal (9% CI) 989 1182 77.6% 0.55 [0.31, 0.97] Total events 80 157 Heterogeneity: $r^2 = 0.47$; $\chi^2 = 25.70$, d.f. = 12 ($P = 0.01$); $l^2 = 53\%$ Total events 80 157 Heterogeneity: $r^2 = 0.36$; $\chi^2 = 30.26$, d.f. = 17 ($P = 0.02$); $l^2 = 44\%$ 0.50 [0.31, 1.079] Total events 80 157 Heterogeneity: $r^2 = 0.36$; $\chi^2 = 30.26$, d.f. = 17 ($P = 0.02$); $l^2 = 44\%$ 0.50 [0.31, 0.79]						0.00/		
Lagerstedt, 1985 [29] 0 23 8 28 2.8% 0.05 [0.00, 0.94] Righini, 2016 [27] 4 122 8 130 7.4% 0.52 [0.15, 1.76] Schwarz, 2010 [8] 2 54 2 53 4.0% 0.58 [0.13, 7.23] Subtotal (95% Cl) 378 387 22.4% 0.37 [0.17, 0.79] Total events 9 31 Heterogeneity: $r^2 = 0.00$; $\chi^2 = 3.99$, d.f. = 4 ($P = 0.41$); $l^2 = 0\%$ Test for overall effect: $Z = 2.57$ ($P = 0.01$) Cohort studies Brateanu, 2016 [43] 6 141 24 309 9.6% 0.53 [0.21, 1.32] Dorr, 2007 [41] 0 20 0 25 Not estimable Kazmers, 1999 [37] 9 36 2 35 5.4% 5.50 [1.09, 27.64] Labropoulos, 2002 [39] 2 19 6 29 4.9% 0.45 [0.08 [2.52] Lattz, 2010 [40] 36 236 36 119 12.8% 0.41 [0.24, 0.70] Lohr, 1995 [36] 3 23 38 169 7.2% 0.52 [0.00, 1.77] Masuda, 1998 [31] 0 28 2 26 2.0% 0.17 [0.01, 3.76] Pellegrini, 1993 [42] 0 12 4 13 2.0% 0.08 [0.00, 1.77] Sales, 2010 [30] 1 52 13 32 3.7% 0.03 [0.00, 0.23] Schwarz, 2001 [30] 1 52 13 32 3.7% 0.34 [0.14, 0.83] Masuda, 1998 [31] 0 28 42.2% 3.55 [0.52, 24.26] Sharpe, 2002 [38] 0 12 4 73 2.1% 0.62 [0.03, 12.20] Solis, 1992 [34] 3 14 2 28 4.2% 3.55 [0.32, 24.26] Subtotal (95% Cl) 989 1182 77.6% 0.34 [0.14, 0.83] Wang, 2007 [35] 2 60 6 100 5.3% 0.54 [0.11, 2.77] Total events 80 157 Heterogeneity: $r^2 = 0.47$; $r^2 = 2.57$, 0.41, $= 12$ ($P = 0.01$); $l^2 = 53\%$ Total events 89 188 Heterogeneity: $r^2 = 0.47$; $r^2 = 2.57$, 0.41, $= 12$ ($P = 0.02$); $l^2 = 44\%$ Heterogeneity: $r^2 = 0.36$; $r^2 = 30.26$, d.1. $= 17$ ($P = 0.02$); $l^2 = 44\%$ Heterogeneity: $r^2 = 0.36$; $r^2 = 30.26$, d.1. $= 17$ ($P = 0.02$); $l^2 = 44\%$ Heterogeneity: $r^2 = 0.36$; $r^2 = 30.26$, d.1. $= 17$ ($P = 0.02$); $l^2 = 44\%$ Heterogeneity: $r^2 = 0.36$; $r^2 = 30.26$, d.1. $= 17$ ($P = 0.02$); $l^2 = 44\%$ Heterogeneity: $r^2 = 0.36$; $r^2 = 30.26$, d.1. $= 17$ ($P = 0.02$); $l^2 = 44\%$ Heterogeneity: $r^2 = 2.97$ ($P = 0.003$) 0.01 0.1 1 10		-						
Righini, 2016 [27] 4 122 8 130 7.4% 0.52 0.15 1.76 Schwarz, 2010 [8] 2 54 2 53 4.0% 0.98 [0.17, 0.79] Total events 9 31 Heterogeneity: $r^2 = 0.00; r^2 = 3.99, d.f. = 4 (P = 0.41); l^2 = 0% 0.37 [0.17, 0.79] 0.37 [0.17, 0.79] Cohort studies Brateanu, 2016 [43] 6 141 24 309 9.6% 0.53 [0.21, 1.32] Dorr, 2007 [41] 0 20 0 25 5.50 [1.09, 27.64] Labropoulos, 2002 [39] 2 19 6 29 4.9% 0.45 [0.08, 2.52] Lautz, 2010 [40] 36 236 36 119 12.8% 0.41 [0.24, 0.70] Labropoulos, 2002 [39] 2 19 6 29 4.9% 0.45 [0.08, 2.52] Lautz, 2010 [30] 3 23 38 169 7.2% 0.52 [0.15, 1.83] Masuda, 1998 [34] 0 28 2 26 2.0% 0.03 [0.00, 1.3, 7.6] Schwarz, 2001 [30] 152 13 32 3.7% $								
Schwarz 2010 [8] 2 54 2 53 4.0% Subtotal (95% Cl) 378 387 22.4% Total events 9 31 Heterogeneity: $r^2 = 0.00$; $\chi^2 = 3.99$, d.f. = 4 ($P = 0.41$); $l^2 = 0\%$ Test for overall effect: $Z = 2.57$ ($P = 0.01$) Cohort studies Brateanu, 2016 [43] 6 141 24 309 9.6% Dorr, 2007 [41] 0 20 0 25 Not estimable Kazmers, 1999 [37] 9 36 2 35 5.4% Labropoulos, 2002 [39] 2 19 6 29 4.9% 0.45 [0.08, 2.52] Lautz, 2010 [40] 36 236 36 119 12.8% 0.41 [0.24, 0.70] Labro, 1995 [36] 3 23 38 169 7.2% 0.52 [0.15, 1.83] Masuda, 1998 [31] 0 28 2 26 2.0% 0.17 [0.01, 3.7] Pellegrini, 1993 [42] 0 12 4 13 2.0% 0.08 [0.00, 1.77] Sales, 2010 [30] 1 52 13 32 3.7% 0.03 [0.00, 0.23] Sharpe, 2002 [38] 0 12 4 73 2.1% 0.62 [0.03, 12.20] Solis, 1992 [34] 3 14 2 28 4.2% 3.55 [0.52, 24.26] Subtotal (95% Cl) 989 1182 77.6% 0.55 [0.31, 0.97] Total events 80 157 Heterogeneity: $r^2 = 0.47$; $\chi^2 = 25.70$, d.f. = 12 ($P = 0.01$); $l^2 = 53\%$ Total events 80 157 Heterogeneity: $r^2 = 0.47$; $\chi^2 = 25.70$, d.f. = 12 ($P = 0.01$); $l^2 = 53\%$ Heterogeneity: $r^2 = 0.47$; $\chi^2 = 25.70$, d.f. = 12 ($P = 0.01$); $l^2 = 53\%$ Heterogeneity: $r^2 = 0.47$; $\chi^2 = 25.70$, d.f. = 17 ($P = 0.02$); $l^2 = 44\%$ 0.50 [0.31, 0.79] Total events 89 1367 Total events 89 188 Heterogeneity: $r^2 = 0.36$; $\chi^2 = 30.26$, d.f. = 17 ($P = 0.02$); $l^2 = 44\%$ 0.50 [0.31, 0.79] Total events 89 188 Heterogeneity: $r^2 = 0.36$; $\chi^2 = 30.26$, d.f. = 17 ($P = 0.02$); $l^2 = 44\%$ 0.50 [0.31, 0.79]	U	_						
Subtotal (95% Cl) 278 387 22.4% 0.37 [0.17, 0.79] Total events 9 31 Heterogeneity: $r^2 = 0.00; \chi^2 = 3.99, d.f. = 4 (P = 0.41); l^2 = 0\%$ Test for overall effect: $Z = 2.57$ ($P = 0.01$) Cohort studies Brateanu, 2016 [43] 6 141 24 309 9.6% 0.53 [0.21, 1.32] Dor, 2007 [41] 0 20 0 25 Not estimable Kazmers, 1999 [37] 9 36 2 35 5.4% 5.50 [1.09, 27.64] Labropoulos, 2002 [39] 2 19 6 29 4.9% 0.45 [0.08, 2.52] Lautz, 2010 [40] 36 236 36 119 12.8% 0.41 [0.24, 0.70] Lohr, 1995 [36] 3 23 38 169 7.2% 0.52 [0.15, 1.33] Masuda, 1998 [31] 0 28 2 26 2.0% 0.17 [0.01, 3.76] Pellegrini, 1993 [42] 0 12 4 13 2.0% 0.08 [0.00, 1.77] Sales, 2010 [33] 10 76 7 65 8.8% 1.26 [0.45, 3.51] Schwarz, 2001 [30] 1 52 13 32 3.7% 0.03 [0.00, 0.23] Sharpe, 2002 [38] 0 12 4 73 2.1% 0.62 [0.03, 12.20] Solis, 1992 [34] 3 14 2 28 4.2% 3.55 [0.52, 24.26] Sule, 2009 [32] 0 17 0 18 Not estimable Utter, 2016 [10] 8 243 13 141 9.7% 0.34 [0.14, 0.83] Wang, 2007 [35] 2 60 6 100 5.3% 0.55 [0.31, 0.97] Total events 80 157 Heterogeneity: $r^2 = 0.47$; $\chi^2 = 25.70$, d.f. = 12 ($P = 0.01$); $l^2 = 53\%$ Total (95% Cl) 989 1182 77.6% 0.55 [0.31, 0.79] Total (95% Cl) 1367 1569 100.0% 0.50 [0.31, 0.79] Total (95% Cl) 1367 1569 100.0% 0.50 [0.31, 0.79] Total (95% Cl) 1367 1569 100.0% 0.50 [0.31, 0.79] Total events 89 188 Heterogeneity: $r^2 = 0.36$; $\chi^2 = 30.26$, d.f. = 17 ($P = 0.02$); $l^2 = 44\%$ 0.01 0.1 1 10 100								
Total events 9 31 Heterogeneily: $\tau^2 = 0.00$; $\chi^2 = 3.99$, d.f. = 4 ($P = 0.41$); $l^2 = 0\%$ Test for overall effect: $Z = 2.57$ ($P = 0.01$) Cohort studies Brateanu, 2016 [43] 6 141 24 309 9.6% 0.53 [0.21, 1.32] Dor, 2007 [41] 0 20 0 25 Not estimable Kazmers, 1999 [37] 9 36 2 35 5.4% 5.50 [1.09, 27.64] Labropoulos, 2002 [39] 2 19 6 29 4.9% 0.45 [0.08, 2.52] Latrz, 2010 [40] 36 236 36 119 12.8% 0.41 [0.24, 0.70] Lohr, 1995 [36] 3 23 38 169 7.2% 0.52 [0.15, 1.83] Masuda, 1998 [31] 0 28 2 26 2.0% 0.17 [0.01, 3.76] Pellegrini, 1993 [42] 0 12 4 13 2.0% 0.08 [0.00, 1.77] Sales, 2010 [30] 1 52 13 32 3.7% 0.03 [0.00, 0.23] Sharpe, 2002 [38] 0 12 4 73 2.1% 0.62 [0.03, 12.20] Solis, 1992 [34] 3 14 2 28 4.2% 3.55 [0.52, 24.26] Subtotal (95% Cl) 989 1182 77.6% 0.55 [0.31, 0.97] Total (95% Cl) 1367 1569 100.0% 0.50 [0.31, 0.79] Total events 89 188 Heterogeneity: $\tau^2 = 0.36; \tau^2 = 30.26, d.1. = 17 (P = 0.02); l^2 = 44\%$ Heterogeneity: $\tau^2 = 0.36; \tau^2 = 30.26, d.1. = 17 (P = 0.02); l^2 = 44\%$		2		2				
Heterogeneity: $\tau^2 = 0.00$; $\chi^2 = 3.99$, d.f. = 4 (<i>P</i> = 0.41); <i>I</i> ² = 0% Test for overall effect: <i>Z</i> = 2.57 (<i>P</i> = 0.01) Cohort studies Brateanu, 2016 [43] 6 141 24 309 9.6% 0.53 [0.21, 1.32] Dorr, 2007 [41] 0 20 0 25 Not estimable Kazmers, 1999 [37] 9 36 2 35 5.4% 5.50 [1.09, 27.64] Labropoulos, 2002 [39] 2 19 6 29 4.9% 0.45 [0.08, 2.52] Lautz, 2010 [40] 36 236 36 119 12.8% 0.41 [0.24, 0.70] Lautz, 2010 [40] 36 236 36 119 12.8% 0.41 [0.24, 0.70] Lautz, 2010 [33] 10 76 7 65 8.8% 1.26 [0.45, 3.51] Schwarz, 2001 [30] 1 52 13 32 3.7% 0.03 [0.00, 0.23] Sharpe, 2002 [38] 0 12 4 73 2.1% 0.62 [0.03, 12.20] Solis, 1992 [34] 3 14 2 28 4.2% 3.55 [0.52, 24.26] Sule, 2009 [32] 0 17 0 18 Not estimable Utter, 2016 [10] 8 243 13 141 9.7% 0.34 [0.14, 0.83] Wang, 2007 [35] 2 60 6 100 5.3% 0.55 [0.31, 0.97] Total (95% Cl) 989 1182 77.6% 0.55 [0.31, 0.97] Total (95% Cl) 1367 1569 100.0% 0.50 [0.31, 0.79] Total (95% Cl) 1367 1569 100.0% 0.50 [0.31, 0.79]			378		387	22.4%	0.37 [0.17, 0.79]	
Test for overall effect: $Z = 2.57$ ($P = 0.01$) Cohort studies Brateanu, 2016 [43] 6 141 24 309 9.6% 0.53 [0.21, 1.32] Dor, 2007 [41] 0 20 0 25 Not estimable Kazmers, 1999 [37] 9 36 2 35 5.4% 5.50 [1.09, 27.64] Labropoulos, 2002 [39] 2 19 6 29 4.9% 0.45 [0.08, 2.52] Lautz, 2010 [40] 36 236 36 119 12.8% 0.41 [0.24, 0.70] Lohr, 1995 [36] 3 23 38 169 7.2% 0.52 [0.15, 1.83] Masuda, 1998 [31] 0 28 2 26 2.0% 0.17 [0.01, 3.76] Pellegrini, 1993 [42] 0 12 4 13 2.0% 0.08 [0.00, 1.77] Sales, 2010 [33] 10 76 7 65 8.8% 1.26 [0.45, 3.51] Schwarz, 2001 [30] 1 52 13 32 3.7% 0.03 [0.00, 0.23] Sharpe, 2002 [38] 0 12 4 73 2.1% 0.62 [0.03, 12.20] Solis, 1992 [34] 3 14 2 28 4.2% 3.55 [0.52, 24.26] Sule, 2009 [32] 0 17 0 18 Not estimable Utter, 2016 [10] 8 243 13 141 9.7% 0.34 [0.14, 0.83] Wang, 2007 [35] 2 60 6 100 5.3% 0.54 [0.11, 2.77] Subtotal (95% CI) 989 1182 77.6% 0.55 [0.31, 0.97] Total events 80 157 Heterogeneity: $\tau^2 = 0.47$; $\chi^2 = 25.70$, d.f. = 12 ($P = 0.01$); $I^2 = 53\%$ Total (95% CI) 1367 1569 100.0% 0.50 [0.31, 0.79] Total (95% CI) 1367 1569 100.0% 0.50 [0.31, 0.79] Total events 89 188 Heterogeneity: $\tau^2 = 0.36$; $\chi^2 = 30.26$, d.f. = 17 ($P = 0.02$); $I^2 = 44\%$ Heterogeneity: $\tau^2 = 0.26$; $\chi^2 = 30.26$, d.f. = 17 ($P = 0.02$); $I^2 = 44\%$ 0.01 0.1 1 10 10								
$\begin{array}{c c} Cohort studies \\ Brateanu, 2016 [43] & 6 & 141 & 24 & 309 & 9.6\% & 0.53 [0.21, 1.32] \\ Dorr, 2007 [41] & 0 & 20 & 0 & 25 & Not estimable \\ Kazmers, 1999 [37] & 9 & 36 & 2 & 35 & 5.4\% & 5.50 [1.09, 27.64] \\ Labropoulos, 2002 [39] & 2 & 19 & 6 & 29 & 4.9\% & 0.45 [0.08, 2.52] \\ Lautz, 2010 [40] & 36 & 236 & 36 & 119 & 12.8\% & 0.41 [0.24, 0.70] \\ Lohr, 1995 [36] & 3 & 23 & 38 & 169 & 7.2\% & 0.52 [0.15, 1.83] \\ Masuda, 1998 [31] & 0 & 28 & 2 & 26 & 2.0\% & 0.17 [0.01, 3.76] \\ Pellegrini, 1993 [42] & 0 & 12 & 4 & 13 & 2.0\% & 0.08 [0.00, 1.77] \\ Sales, 2010 [33] & 10 & 76 & 7 & 65 & 8.8\% & 1.26 [0.45, 3.51] \\ Schwarz, 2001 [30] & 1 & 52 & 13 & 32 & 3.7\% & 0.62 [0.03, 12.20] \\ Solis, 1992 [34] & 3 & 14 & 2 & 28 & 4.2\% & 3.55 [0.52, 24.26] \\ Sule, 2009 [32] & 0 & 17 & 0 & 18 & Not estimable \\ Utter, 2016 [10] & 8 & 243 & 13 & 141 & 9.7\% & 0.34 [0.14, 0.83] \\ Wang, 2007 [35] & 2 & 60 & 6 & 100 & 5.3\% & 0.54 [0.11, 2.77] \\ Subtotal (95\% CI) & 989 & 1182 & 77.6\% & 0.55 [0.31, 0.97] \\ Total (95\% CI) & 1367 & 1569 & 100.0\% & 0.50 [0.31, 0.79] \\ Total (95\% CI) & 1367 & 1569 & 100.0\% & 0.50 [0.31, 0.79] \\ Heterogeneity: r^2 = 0.47; r_2^2 = 30.26, d.f. = 17 (P = 0.02); l^2 = 44\% \\ Heterogeneity: r^2 = 0.36; r_2^2 = 30.26, d.f. = 17 (P = 0.02); l^2 = 44\% \\ Heterogeneity: r^2 = 0.36; r_2^2 = 30.26, d.f. = 17 (P = 0.02); l^2 = 44\% \\ Heterogeneity: r^2 = 0.36; r_2^2 = 30.26, d.f. = 17 (P = 0.02); l^2 = 44\% \\ Heterogeneity: r^2 = 0.36; r_2^2 = 30.26, d.f. = 17 (P = 0.02); l^2 = 44\% \\ Heterogeneity: r^2 = 0.36; r_2^2 = 30.26, d.f. = 17 (P = 0.02); l^2 = 44\% \\ Heterogeneity: r^2 = 0.36; r_2^2 = 30.26, d.f. = 17 (P = 0.02); l^2 = 44\% \\ Heterogeneity: r^2 = 0.36; r_2^2 = 30.26, d.f. = 17 (P = 0.02); l^2 = 44\% \\ Heterogeneity: r^2 = 0.36; r_2^2 = 30.26, d.f. = 17 (P = 0.02); l^2 = 44\% \\ Heterogeneity: r^2 = 0.36; r_2^2 = 30.26, d.f. = 17 (P = 0.02); l^2 = 44\% \\ Heterogeneity: r^2 = 0.36; r_2^2 = 30.26, d.f. = 17 (P = 0.02); l^2 = 44\% \\ Heterogeneity: r^2 = 0.36; r_2^2 = 30.26, d.f. = 17 (P = 0.02); l^2 = 44\% \\ Heterogeneity: r^2$	Heterogeneity: $\tau^2 = 0.0$	$00; \chi^2 = 3$	3.99, d.t. =	= 4 (P = 0.)	41); <i>I^e</i> =	0%		
Brateanu, 2016 [43] 6 141 24 309 9.6% 0.53 [0.21, 1.32] Dor, 2007 [41] 0 20 0 25 Not estimable Kazmers, 1999 [37] 9 36 2 35 5.4% 5.50 [1.09, 27.64] Labropoulos, 2002 [39] 2 19 6 29 4.9% 0.45 [0.08, 2.52] Lautz, 2010 [40] 36 236 36 119 12.8% 0.41 [0.24, 0.70] Lohr, 1995 [36] 3 23 38 169 7.2% 0.52 [0.15, 1.83] Masuda, 1998 [31] 0 28 2 26 2.0% 0.17 [0.01, 3.76] Pellegrini, 1993 [42] 0 12 4 13 2.0% 0.08 [0.00, 1.77] Sales, 2010 [33] 10 76 7 65 8.8% 1.26 [0.45, 3.51] Schwarz, 2001 [30] 1 52 13 32 3.7% 0.03 [0.00, 0.23] Sharpe, 2002 [38] 0 12 4 73 2.1% 0.62 [0.03, 12.20] Solis, 1992 [34] 3 144 2 28 4.2% 3.55 [0.52, 24.26] Sule, 2009 [32] 0 17 0 18 Not estimable Utter, 2016 [10] 8 243 13 141 9.7% 0.34 [0.14, 0.83] Wang, 2007 [35] 2 60 6 100 5.3% 0.55 [0.31, 0.97] Total events 80 157 Heterogeneity: $\tau^2 = 0.47$; $\gamma^2 = 25.70$, d.f. = 12 ($P = 0.01$); $I^2 = 53\%$ Total (95% CI) 989 188 Heterogeneity: $\tau^2 = 0.47$; $\gamma^2 = 30.26$, d.f. = 17 ($P = 0.02$); $I^2 = 44\%$ Total (95% CI) 1 1367 1569 100.0% 0.50 [0.31, 0.79] Total events 89 188 Heterogeneity: $\tau^2 = 0.36$; $\gamma^2 = 30.26$, d.f. = 17 ($P = 0.02$); $I^2 = 44\%$ Total (95% CI) 1 1367 1569 100.0% 0.50 [0.31, 0.79] Total events 89 188 Heterogeneity: $\tau^2 = 0.36$; $\gamma^2 = 30.26$, d.f. = 17 ($P = 0.02$); $I^2 = 44\%$ 0.01 0.1 1 0 100	lest for overall effect:	Z = 2.57	(P = 0.01))				
Brateanu, 2016 [43] 6 141 24 309 9.6% 0.53 [0.21, 1.32] Dor, 2007 [41] 0 20 0 25 Not estimable Kazmers, 1999 [37] 9 36 2 35 5.4% 5.50 [1.09, 27.64] Labropoulos, 2002 [39] 2 19 6 29 4.9% 0.45 [0.08, 2.52] Lautz, 2010 [40] 36 236 36 119 12.8% 0.41 [0.24, 0.70] Lohr, 1995 [36] 3 23 38 169 7.2% 0.52 [0.15, 1.83] Masuda, 1998 [31] 0 28 2 26 2.0% 0.17 [0.01, 3.76] Pellegrini, 1993 [42] 0 12 4 13 2.0% 0.08 [0.00, 1.77] Sales, 2010 [33] 10 76 7 65 8.8% 1.26 [0.45, 3.51] Schwarz, 2001 [30] 1 52 13 32 3.7% 0.03 [0.00, 0.23] Sharpe, 2002 [38] 0 12 4 73 2.1% 0.62 [0.03, 12.20] Solis, 1992 [34] 3 144 2 28 4.2% 3.55 [0.52, 24.26] Sule, 2009 [32] 0 17 0 18 Not estimable Utter, 2016 [10] 8 243 13 141 9.7% 0.34 [0.14, 0.83] Wang, 2007 [35] 2 60 6 100 5.3% 0.55 [0.31, 0.97] Total events 80 157 Heterogeneity: $\tau^2 = 0.47$; $\gamma^2 = 25.70$, d.f. = 12 ($P = 0.01$); $I^2 = 53\%$ Total (95% CI) 989 188 Heterogeneity: $\tau^2 = 0.47$; $\gamma^2 = 30.26$, d.f. = 17 ($P = 0.02$); $I^2 = 44\%$ Total (95% CI) 1 1367 1569 100.0% 0.50 [0.31, 0.79] Total events 89 188 Heterogeneity: $\tau^2 = 0.36$; $\gamma^2 = 30.26$, d.f. = 17 ($P = 0.02$); $I^2 = 44\%$ Total (95% CI) 1 1367 1569 100.0% 0.50 [0.31, 0.79] Total events 89 188 Heterogeneity: $\tau^2 = 0.36$; $\gamma^2 = 30.26$, d.f. = 17 ($P = 0.02$); $I^2 = 44\%$ 0.01 0.1 1 0 100	Cohort studies							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6	141	24	309	9.6%	0.53 [0.21, 1.32]	
Kazmers, 1999 [37] 9 36 2 35 5.4% 5.50 [1.09, 27.64] Labropoulos, 2002 [39] 2 19 6 29 4.9% 0.45 [0.08, 2.52] Lautz, 2010 [40] 36 236 36 119 12.8% 0.41 [0.24, 0.70] Lohr, 1995 [36] 3 23 38 169 7.2% 0.52 [0.15, 1.83] Masuda, 1998 [31] 0 28 2 26 2.0% 0.17 [0.01, 3.76] Pellegrini, 1993 [42] 0 12 4 13 2.0% 0.08 [0.00, 1.77] Sales, 2010 [30] 1 52 13 32 3.7% 0.03 [0.00, 0.23] Sharpe, 2002 [38] 0 12 4 73 2.1% 0.62 [0.03, 12.20] Solis, 1992 [34] 3 14 2 28 4.2% 3.55 [0.52, 24.26] Sule, 2009 [32] 0 17 0 18 Not estimable Utter, 2016 [10] 8 243 13 141 9.7% 0.34 [0.14, 0.83] Wang, 2007 [35] 2 60 6 100 5.3% 0.54 [0.11, 2.77] Subtotal (95% Cl) 989 1182 77.6% 0.55 [0.31, 0.97] Total events 80 157 Heterogeneity: $r^2 = 0.47$; $r^2 = 25.70$, d.f. = 17 ($P = 0.02$); $l^2 = 44\%$ Total (95% Cl) 1367 1569 100.0% 0.50 [0.31, 0.79] Total events 89 188 Heterogeneity: $r^2 = 0.36$; $r^2 = 30.26$, d.f. = 17 ($P = 0.02$); $l^2 = 44\%$ Total (95% Cl) 1367 1569 100.0% 0.50 [0.31, 0.79] Total events 89 188						0.070		
Labropoulos, 2002 [39] 2 19 6 29 4.9% 0.45 [0.08, 2.52] Lautz, 2010 [40] 36 236 36 119 12.8% 0.41 [0.24, 0.70] Lohr, 1995 [36] 3 23 38 169 7.2% 0.52 [0.15, 1.83] Masuda, 1998 [31] 0 28 2 26 2.0% 0.17 [0.01, 3.76] Pellegrini, 1993 [42] 0 12 4 13 2.0% 0.08 [0.00, 0.177] Sales, 2010 [33] 10 76 7 65 8.8% 1.26 [0.45, 3.51] Schwarz, 2001 [30] 1 52 13 32 3.7% 0.03 [0.00, 0.23] Sharpe, 2002 [38] 0 12 4 73 2.1% 0.62 [0.03, 12.20] Solis, 1992 [34] 3 14 2 28 4.2% 3.55 [0.52, 24.26] Sule, 2009 [32] 0 17 0 18 Not estimable Utter, 2016 [10] 8 243 13 141 9.7% 0.34 [0.14, 0.83] Wang, 2007 [35] 2 60 6 100 5.3% 0.54 [0.11, 2.77] Subtotal (95% Cl) 989 1182 77.6% 0.55 [0.31, 0.97] Total events 80 157 Heterogeneity: $r^2 = 0.47$; $\chi^2 = 25.70$, d.f. = 12 ($P = 0.01$); $l^2 = 53\%$ Total (95% Cl) 1367 1569 100.0% 0.50 [0.31, 0.79] Total events 89 188 Heterogeneity: $r^2 = 0.36$; $\chi^2 = 30.26$, d.f. = 17 ($P = 0.02$); $l^2 = 44\%$ Total (95% Cl) 0.1 1 10 10		-				5.4%		
Lautz, 2010 [40] 36 236 36 119 12.8% 0.41 [0.24, 0.70] Lohr, 1995 [36] 3 23 38 169 7.2% 0.52 [0.15, 1.83] Masuda, 1998 [31] 0 28 2 26 2.0% 0.17 [0.01, 3.76] Pellegrini, 1993 [42] 0 12 4 13 2.0% 0.08 [0.00, 1.77] Sales, 2010 [33] 10 76 7 65 8.8% 1.26 [0.45, 3.51] Schwarz, 2001 [30] 1 52 13 32 3.7% 0.03 [0.00, 0.23] Sharpe, 2002 [38] 0 12 4 73 2.1% 0.62 [0.03, 12.20] Solis, 1992 [34] 3 14 2 28 4.2% 3.55 [0.52, 24.26] Sule, 2009 [32] 0 17 0 18 Not estimable Utter, 2016 [10] 8 243 13 141 9.7% 0.34 [0.14, 0.83] Wang, 2007 [35] 2 60 6 100 5.3% 0.54 [0.11, 2.77] Subtotal (95% Cl) 989 1182 77.6% 0.55 [0.31, 0.97] Total (95% Cl) 989 157 Heterogeneity: $\tau^2 = 0.47$; $\chi^2 = 25.70$, d.f. = 12 ($P = 0.01$); $I^2 = 53\%$ Total (95% Cl) 1367 1569 100.0% 0.50 [0.31, 0.79] Total events 89 188 Heterogeneity: $\tau^2 = 0.36$; $\chi^2 = 30.26$, d.f. = 17 ($P = 0.02$); $I^2 = 44\%$ Total effect: $Z = 2.97$ ($P = 0.003$)								
Lohr, 1995 [36] 3 23 38 169 7.2% 0.52 [0.15, 1.83] Masuda, 1998 [31] 0 28 2 26 2.0% 0.17 [0.01, 3.76] Pellegrini, 1993 [42] 0 12 4 13 2.0% 0.08 [0.00, 1.77] Sales, 2010 [33] 10 76 7 65 8.8% 1.26 [0.45, 3.51] Schwarz, 2001 [30] 1 52 13 32 3.7% 0.03 [0.00, 0.23] Sharpe, 2002 [38] 0 12 4 73 2.1% 0.62 [0.03, 12.20] Solis, 1992 [34] 3 14 2 28 4.2% 3.55 [0.52, 24.26] Sule, 2009 [32] 0 17 0 18 Not estimable Utter, 2016 [10] 8 243 13 141 9.7% 0.34 [0.14, 0.83] Wang, 2007 [35] 2 60 6 100 5.3% 0.54 [0.11, 2.77] Subtotal (95% Cl) 989 1182 77.6% 0.55 [0.31, 0.97] Total events 80 157 Heterogeneity: $\tau^2 = 0.47$; $\chi^2 = 25.70$, d.f. = 12 ($P = 0.01$); $I^2 = 53\%$ Total (95% Cl) 1367 1569 100.0% 0.50 [0.31, 0.79] Total events 89 188 Heterogeneity: $\tau^2 = 0.36$; $\chi^2 = 30.26$, d.f. = 17 ($P = 0.02$); $I^2 = 44\%$ Test for overall effect: $Z = 2.97$ ($P = 0.03$) 0.01 0.1 1 10								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
Sales, 2010 [33] 10 76 7 65 8.8% 1.26 [0.45, 3.51] Schwarz, 2001 [30] 1 52 13 32 3.7% 0.03 [0.00, 0.23] Sharpe, 2002 [38] 0 12 4 73 2.1% 0.62 [0.03, 12.20] Solis, 1992 [34] 3 14 2 28 4.2% 3.55 [0.52, 24.26] Sule, 2009 [32] 0 17 0 18 Not estimable Utter, 2016 [10] 8 243 13 141 9.7% 0.34 [0.14, 0.83] Wang, 2007 [35] 2 60 6 100 5.3% 0.54 [0.11, 2.77] Subtotal (95% Cl) 989 1182 77.6% 0.55 [0.31, 0.97] Total events 80 157 Heterogeneity: $\tau^2 = 0.47$; $\chi^2 = 25.70$, d.f. = 12 ($P = 0.01$); $l^2 = 53\%$ Total for evenal effect: $Z = 2.97$ ($P = 0.02$); $l^2 = 44\%$ Heterogeneity: $\tau^2 = 0.36$; $\chi^2 = 30.26$, d.f. = 17 ($P = 0.02$); $l^2 = 44\%$ Test for overall effect: $Z = 2.97$ ($P = 0.003$) 0.01 0.1 1 00		-						
Schwarz, 2001 [30] 1 52 13 32 3.7% 0.03 [0.00, 0.23] Sharpe, 2002 [38] 0 12 4 73 2.1% 0.62 [0.03, 12.20] Solis, 1992 [34] 3 14 2 28 4.2% 3.55 [0.52, 24.26] Sule, 2009 [32] 0 17 0 18 Not estimable Utter, 2016 [10] 8 243 13 141 9.7% 0.34 [0.14, 0.83] Wang, 2007 [35] 2 60 6 100 5.3% 0.54 [0.11, 2.77] Subtotal (95% Cl) 989 1182 77.6% 0.55 [0.31, 0.97] Total events 80 157 Heterogeneity: $\tau^2 = 0.47$; $\chi^2 = 25.70$, d.f. = 12 ($P = 0.01$); $I^2 = 53\%$ Total (95% Cl) 1367 1569 100.0% 0.50 [0.31, 0.79] Total events 89 188 Heterogeneity: $\tau^2 = 0.36$; $\chi^2 = 30.26$, d.f. = 17 ($P = 0.02$); $I^2 = 44\%$ Test for overall effect: $Z = 2.97$ ($P = 0.003$) 0.01 0.1 1 10		-						
Sharpe, 2002 [38] 0 12 4 73 2.1% 0.62 [0.03, 12.20] Solis, 1992 [34] 3 14 2 28 4.2% $3.55 [0.52, 24.26]$ Sule, 2009 [32] 0 17 0 18 Not estimable Utter, 2016 [10] 8 243 13 141 9.7% 0.34 [0.14, 0.83] Wang, 2007 [35] 2 60 6 100 5.3% 0.54 [0.11, 2.77] Subtotal (95% Cl) 989 1182 77.6% 0.55 [0.31, 0.97] Total events 80 157 Heterogeneity: $\tau^2 = 0.47$; $\chi^2 = 25.70$, d.f. = 12 ($P = 0.01$); $l^2 = 53\%$ Text for everall offect: $Z = 2.97$ ($P = 0.94$) Total (95% Cl) 1367 1569 100.0% 0.50 [0.31, 0.79] Total events 89 188 Heterogeneity: $\tau^2 = 0.36$; $\chi^2 = 30.26$, d.f. = 17 ($P = 0.02$); $l^2 = 44\%$ Test for overall effect: $Z = 2.97$ ($P = 0.003$) 0.01 0.1 1 10 100		1		-				•
Solis, 1992 [34] 3 14 2 28 4.2% 3.55 [0.52, 24.26] Sule, 2009 [32] 0 17 0 18 Not estimable Utter, 2016 [10] 8 243 13 141 9.7% 0.34 [0.14, 0.83] Wang, 2007 [35] 2 60 6 100 5.3% 0.54 [0.11, 2.77] Subtotal (95% Cl) 989 1182 77.6% 0.55 [0.31, 0.97] Total events 80 157 Heterogeneity: $\tau^2 = 0.47$; $\chi^2 = 25.70$, d.f. = 12 ($P = 0.01$); $l^2 = 53\%$ Tet for evenal effect: $Z = 2.97$ ($P = 0.04$) Total (95% Cl) 1367 1569 100.0% 0.50 [0.31, 0.79] Total events 89 188 Heterogeneity: $\tau^2 = 0.36$; $\chi^2 = 30.26$, d.f. = 17 ($P = 0.02$); $l^2 = 44\%$ Test for overall effect: $Z = 2.97$ ($P = 0.003$) 0.01 0.1 1 10 100		ò						
Sule, 2009 [32] 0 17 0 18 Not estimable Utter, 2016 [10] 8 243 13 141 9.7% 0.34 [0.14, 0.83] Wang, 2007 [35] 2 60 6 100 5.3% 0.54 [0.11, 2.77] Subtotal (95% Cl) 989 1182 77.6% 0.55 [0.31, 0.97] Total events 80 157 Heterogeneity: $\tau^2 = 0.47$; $\chi^2 = 25.70$, d.f. = 12 ($P = 0.01$); $l^2 = 53\%$ Total (95% Cl) 1367 1569 100.0% 0.50 [0.31, 0.79] Total events 89 188 Heterogeneity: $\tau^2 = 0.36$; $\chi^2 = 30.26$, d.f. = 17 ($P = 0.02$); $l^2 = 44\%$ 0.01 0.1 1 10 10							6 · · · · · · · · · · · · · · · · · · ·	
Utter, 2016 [10] 8 243 13 141 9.7% 0.34 [0.14, 0.83] Wang, 2007 [35] 2 60 6 100 5.3% 0.54 [0.11, 2.77] Subtotal (95% Cl) 989 1182 77.6% 0.55 [0.31, 0.97] Total events 80 157 Heterogeneity: $\tau^2 = 0.47$; $\chi^2 = 25.70$, d.f. = 12 ($P = 0.01$); $l^2 = 53\%$ Total (95% Cl) 1367 1569 100.0% 0.50 [0.31, 0.79] Total events 89 188 Heterogeneity: $\tau^2 = 0.36$; $\chi^2 = 30.26$, d.f. = 17 ($P = 0.02$); $l^2 = 44\%$ Test for overall effect: $Z = 2.97$ ($P = 0.003$) 0.01 0.1 1 10								
Wang, 2007 [35] 2 60 6 100 5.3% 0.54 [0.11, 2.77] Subtotal (95% Cl) 989 1182 77.6% 0.55 [0.31, 0.97] Total events 80 157 Heterogeneity: $\tau^2 = 0.47$; $\chi^2 = 25.70$, d.f. = 12 ($P = 0.01$); $l^2 = 53\%$ Total (95% Cl) 1367 1569 100.0% 0.50 [0.31, 0.79] Total events 89 188 Heterogeneity: $\tau^2 = 0.36$; $\chi^2 = 30.26$, d.f. = 17 ($P = 0.02$); $l^2 = 44\%$ 10 10 Test for overall effect: $Z = 2.97$ ($P = 0.003$) 0.01 0.1 1 10				13		9.7%		
Subtotal (95% Cl) 989 1182 77.6% 0.55 [0.31, 0.97] Total events 80 157 Heterogeneity: $\tau^2 = 0.47$; $\chi^2 = 25.70$, d.f. = 12 (P = 0.01); I^2 = 53% Total (95% Cl) 1367 1569 100.0% 0.50 [0.31, 0.79] Total events 89 188 Heterogeneity: $\tau^2 = 0.36$; $\chi^2 = 30.26$, d.f. = 17 (P = 0.02); I^2 = 44% 0.01 0.1 1 Test for overall effect: $Z = 2.97$ (P = 0.003) 0.01 0.1 1 10 100								
Total events 80 157 Heterogeneity: $\tau^2 = 0.47$; $\chi^2 = 25.70$, d.f. = 12 (P = 0.01); $l^2 = 53\%$ Test for events 80 157 Heterogeneity: $\tau^2 = 0.47$; $\chi^2 = 25.70$, d.f. = 12 (P = 0.01); $l^2 = 53\%$ Total (95% Cl) 1367 1569 100.0% 0.50 [0.31, 0.79] Total events 89 188 Heterogeneity: $\tau^2 = 0.36$; $\chi^2 = 30.26$, d.f. = 17 (P = 0.02); $l^2 = 44\%$ Heterogeneity: 10 Test for overall effect: $Z = 2.97$ (P = 0.003) 0.01 0.1 1 10		_		-				•
Test for everal offect: Z = 2.07 (P = 0.04) Total (95% Cl) 1367 1569 100.0% 0.50 [0.31, 0.79] Total events 89 188 Heterogeneity: $\tau^2 = 0.36$; $\chi^2 = 30.26$, d.f. = 17 (P = 0.02); $I^2 = 44\%$ Image: Colored and Colored a	Total events							
Total events 89 188 Heterogeneity: $\tau^2 = 0.36$; $\chi^2 = 30.26$, d.f. = 17 (P = 0.02); l ² = 44% 0.01 0.1 1 10 100	Heterogeneity: $\tau^2 = 0.4$	47; $\chi^2 = 2$	25.70, d.f.	= 12 (P=	0.01); / ²	? = 53%		
Total events 89 188 Heterogeneity: $\tau^2 = 0.36$; $\chi^2 = 30.26$, d.f. = 17 (P = 0.02); l ² = 44% 0.01 0.1 1 10 100	Test for everall effect:	2 2.07	(P 0.04)		_		
Total events 89 188 Heterogeneity: $\tau^2 = 0.36$; $\chi^2 = 30.26$, d.f. = 17 (P = 0.02); l ² = 44% 0.01 0.1 1 10 10	Total (95% CI)		1367		1569	100.0%	0.50 [0.31, 0.79]	•
Test for overall effect: $Z = 2.97 (P = 0.003)$ 0.01 0.1 1 10 100		89		188				
Test for overall effect: $Z = 2.97 (P = 0.003)$ 0.01 0.1 1 10 100		36; χ ² = 3	30.26, d.f.		0.02); /2	² = 44%	F	
							0.01	0.1 1 10 10
					P = 0.40)	$I^2 = 0\%$	Fav	vors [experimental] Favors [control]

Calf Vein Thrombosis Therapy

	> 6 we	eks	6 wee	eks		Odds Ratio		Odds Ra	atio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% (CI M-I	H, Randon	n, 95% Cl	
Ferrara, 2006 [18]	7	96	27	96	35.4%	0.20 [0.08, 0.49]				
Li, 2014 [46]	1	303	2	97	10.2%	0.16 [0.01, 1.75]				
Pinede, 2001 [17]	3	92	2	105	15.9%	1.74 [0.28, 10.62]		-		
Schulman, 1995 [45]	10	171	20	176	38.6%	0.48 [0.22, 1.07]	-	-	•	
Total (95% CI)		662		474	100.0%	0.39 [0.17, 0.90]				
Total events	21		51						J	
Heterogeneity: $\tau^2 = 0$.				P = 0.1	4); <i>I</i> ² = 46	^{3%} 0	0.01 0.1	1	10	100
Test for overall effect: $Z = 2.20$ ($P = 0.03$)							Favors [experim	ental]	Favors [control]	

Fig. 6. Recurrent venous thromboembolism in patients receiving anticoagulant treatment for > 6 weeks versus 6 weeks. CI, confidence interval; d.f, degrees of freedom; M-H, Mantel-Haenszel. [Color figure can be viewed at wileyonlinelibrary.com]

6 v 12 weeks of rivaroxaban for patients with distal deep vein thrombosis

the**bmj** Visual abstract 🐠

6 additional weeks of rivaroxaban after a 6 week uneventful period of anticoagulation effectively reduces the risk of recurrent thrombosis without increasing the risk of a major bleeding event

Study design	- Randomised contro	lled trial 🛛 🥁 Do	uble blind 🛛 📰 2 year follow-up
iii Population	448 people with symp isolated distal deep ve thrombosis (DVT)	ein Womer	ge 65 years old High risk patients wn cause 42% 94%
Comparison	Randomised		ts received 6 weeks of tandard dose rivaroxaban
	Ri	varoxaban	Control
	20 mg i 200	g once daily for 6 weeks	Placebo for 6 weeks 202
Rivroxaban v placebo		Relative ris	sk 95% Cl
Efficacy (composite)	i 11.5%		i 19.3%
 Isolated distal DV 	/т 🚺 8.0%		i 15.4%
- Proximal DVT	i 1.5%	•	i 3.0%
Pulmonary embo	olism i 2.0%		• 1.0%
Major bleeding	i 0%	•	i 0%
Non-major bleeding	0.5%	•	i 0.5%
EudraCT: 2016-000958-36	K Favours riva	roxaban	Favours placebo >
ClinicalTrials.gov: NCT027		blishing Group Ltd	https://bit.ly/bmj-riv-dvt

Walter Ageno et al. BMJ 2022;379:bmj-2022-072623

Duration of Therapy: Proximal DVT

- 3 months
 - -Provoked DVT
 - Especially estrogen related
- No benefit with 6 months except more bleeding
- Obtain scan at end of therapy for new baseline

– J Thromb Haemost. 2011 Dec;9(12):2406-10

Proximal DVT

Circulation, May 2001; 103: 2453 - 2460.

Residual Thrombosis

- 3 months 80.5%
- 6 months 61%
- 12 months 42%
- 24 months 31%
- 36 months 27%

Prandoni Annals IM 2002

What is **Provoked**??

- Major
 Limb fracture
 Major trauma
 - -Big surgery
 - -Estrogen
 - Pregnancy
 - Estrogen-containing contraception
 - HRT
 - -Travel

Idiopathic

- No MAJOR provoking factor
- Minor ones common
 - -Twisted ankle etc..

Immobilization

- Classic is bedrest > 72 hrs
- Limb in cast
- Total immobilization > ~ 4 hours
 - –Especially > 10-12 hours

Duration of Therapy

- What is an Idiopathic Thrombosis?
 - No trauma, surgery or hospital stay for 1-3 months
 - No estrogens
 - No long travel (?)
 - No cancer or major risk factors
 - Exact definition controversial

1st Idiopathic VTE

- High rates (30-40%) of recurrence off anticoagulation
- Multiple RCTs show benefit of long term anticoagulation

 Marked increase in recurrence when stopping anticoagulation

BMJ 2019 Meta-analysis

Year	Risk	Cumulative Incidence
1 Year	10.3%	-
2 year	6.3%	16%
3-5 years	3.8%/year	25% 5 years
6-10 years	3.1/year	36% 10 years

Case fatality rate for recurrence 4% Distal thrombosis 1/10th of risk BMJ 2019: 366:4364

Extended Therapy

Treating 1,000 patient-years with extended anticoagulation following acute VTE may result in^a:

Chest 155:1199-1216, 2019

Two Phases of VTE Therapy

Active phase (3 months)

 Prevents reactivation of initial thrombosis

Secondary prevention (> 3 months)

 Prevents new thrombosis
 Need to identify patients who will benefit

• J Thromb Haemo 2012: 10: 507–5

D-Dimers

- D-dimers checked off therapy to predict risk
- Meta-analysis
 - -7 studies
 - Positive D-Dimer: 10%/yr
 - Negative D-Dimer: 2.9 4.0%/yr
- Unclear if repeat testing helps
- Most recent study showed high rates of recurrence with negative D-dimer 5%/yr

Idiopathic VTE

- No good prediction rules
 Negative D-dimer NOT predictive
 - Thrombus resolution NOT predictive
- Still need better prediction rules!
- Safer anticoagulants is shifting balance toward longer treatment

Duration of Therapy

- Indefinite
 - ->1 DVT (except upper ext)
 - Acquired hypercoagulable states
 - -Idiopathic unusual site
 - Idiopathic severe pulmonary embolism
- 3 months

– Provoked pulmonary embolism

Pregnancy

- Needs weight based LMWH –1 mg/kg BID
- No value in measuring levels
- Hold 24 hours before delivery
- Restart 6-12 after delivery

Breast Feeding

- Warfarin ok
- LMWH ok
- DOAC NO!

What about Hypercoagulable States?

Hypercoagulable State

- Clear risk factor for 1st VTE
- No evidence with classic genetic states predict recurrence
- Multiple guidelines <u>against</u> checking in provoked thrombosis

Thrombophilia Work-Ups

- - -Arterial thrombosis
 - -Upper extremity thrombosis
- **~**\$1200

Lower Dose DOACs?

- Older data for lower doses in chronic therapy of VTE
 - -LMWH
 - -Ximelagatran
 - Did not work for warfarin

Apixaban Results

	Apixaban 2.5mg BID (840)	Apixaban 5mg BID (813)	Placebo (829)
Recurrent VTE	32 (3.8%)	34 (4.2%)	96 (11.6%)
Any Bleeding	27 (3.2%)	35 (4.3%)	19 (2.3%)
Major Bleeding	2 (0.2%)	1 (0.1%)	4 (0.5%)

N = 2482 with VTE (33% PE)

N Engl J Med 2013; 368:699-708

Rivaroxaban Results

	Rivaroxaban 20mg (1107)	Rivaroxaban 10mg (1127)	Aspirin 100mg (1131)
Recurrent VTE	17 (1.5%)	13 (1.2%)	50 (4.4%)
Any Bleeding	196 (17.8%)	160 (14.2%)	143 (12.8%)
Major Bleeding	6 (0.5%)	5 (0.4%)	3 (0.3%)

N = 3365 50% with PE

N Engl J Med 2017; 376:1211-1222

RENOVE Trial

- RCT of patients with thrombosis
- Randomized 6-24 to standard vs
 low dose anticoagulation
- N = 2768
- Power for bleeding superiority

ASH 2024					
	Full Dose N = 1383	Half Dose N = 1385	HR		
Recurrent VTE	13 (1.9%)	19 (2.2%)	1.32 (NS)		
Clinical Bleeding	154 (15.2%)	96 (9.9%)	0.61 (p <0.5)		
Composite	166 (16.5%)	113 (16.7%)	0.67 (p < 0.5)		

Lower Dose Therapy

- Only for chronic venous thrombosis!!
- NOT
 - -Atrial fibrillation
 - -Cancer
 - –Bad thrombophilia
 - -Visceral vein thrombosis

DOAC VTE Stepped Care

Acute		
A 10mg BID	6-12 Months	
x 7 Days R 15 mg bid x 21 days	A 5.0 mg BID x 6-12 M R 20 mg qD x 6-12 M	> 6-12 Months A 2.5 mg BID R 10 mg qD

Direct Oral Anticoagulants

- First line therapy for VTE
- Simplified management
- But
 - Patients still need close follow-up
 - -Still need to manage anticoagulants
 - -Expense an issue

"Break-Through" Clots

- DOACs are not perfect
- Neither are patients...

"Break-Through" Clots

- 1. Is it a breakthrough clot? – New PE in first week ~ 5%
 - -DVT can grow on therapy
 - -New: new vessel or limb involved
 - **–PE after 2 weeks**

-Olson SR, RPTH 2019

"Break-Through" Clots 2. Was patient taking med? -Ideal: levels sent -Ok: INR/PTT check -Check DOAC dose –Ask patient -Check pharmacy

"Break-Through" Clots

3. Treatment – LMWH

- If breakthrough LMWH raise dose 25%
- -Warfarin
 - Compliance concerns

Surgery/Procedures

- Increasing data
- Need to know
 - Drug
 - -Procedure
 - -Renal function

DOACs and Surgery

Drug	Surgery	CrCl	-4	-3	-2	-1	Surgery
Аріх	Major				Hold	Hold	Hold
	Minor					Hold	Hold
Dabig	Major	>50			Hold	Hold	Hold
		<50	Hold	Hold	Hold	Hold	Hold
	Minor	>50				Hold	Hold
		<50		Hold	Hold	Hold	Hold
Rivarox	Major				Hold	Hold	Hold
	Minor					Hold	Hold

DOACs: Post Surgery

- Treat like LMWH
- Simple restart next day
- Complex
 - Prophylactic dose
 - -Full dose 48 hours or more

Summary

- Keep moving!
- Anticoagulation
 - -3 months or indefinite
- Lower dose DOACs

