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Abstract—Noninvasive electroencephalography (EEG)-based
brain–computer interfaces (BCIs) popularly utilize event-related
potential (ERP) for intent detection. Specifically, for EEG-based
BCI typing systems, different symbol presentation paradigms
have been utilized to induce ERPs. In this manuscript, through an
experimental study, we assess the speed, recorded signal quality,
and system accuracy of a language-model-assisted BCI typing
system using three different presentation paradigms: a 4 7
matrix paradigm of a 28-character alphabet with row-column
presentation (RCP) and single-character presentation (SCP), and
rapid serial visual presentation (RSVP) of the same. Our analyses
show that signal quality and classification accuracy are compa-
rable between the two visual stimulus presentation paradigms. In
addition, we observe that while the matrix-based paradigm can
be generally employed with lower inter-trial-interval (ITI) values,
the best presentation paradigm and ITI value configuration is
user dependent. This potentially warrants offering both presen-
tation paradigms and variable ITI options to users of BCI typing
systems.
Index Terms—Brain–computer interface, event-related poten-

tial, matrix speller, P300, RSVP keyboard.

I. INTRODUCTION

N ONINVASIVE brain–computer interfaces (BCIs), specif-
ically those based on electroencephalography (EEG),

have become popular to safely enable people with severe motor
and speech impairments to communicate with their social
networks and interact with their environments [1]–[3]. Typing
is one of the most widely explored applications for EEG-based
BCI systems [1]. Event-related potentials (ERPs), specifically
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the P300 component of these EEG responses, are commonly
exploited by such typing interfaces for user intent detection
[4]–[7].
The pioneering work of Farwell and Donchin showed that

ERPs containing the P300 response can be used to design EEG-
based BCI typing systems [4]. They distributed 36 symbols con-
sisting of the 26 letters in the English alphabet and 10 numerical
digits across a 6 6 matrix. The rows and columns of the matrix
are flashed in a random fashion to generate an oddball paradigm
such that when the row or column that includes the symbol that
the user intends to select is flashed, an ERP containing the P300
component is elicited. This ERP is then used for target symbol
detection. P300 is a positive deflection in the scalp voltage with
a typical latency around 300 ms after the onset of an infrequent
target stimuli [8].
Despite the practice being the benchmark in matrix spellers,

flashing rows and columns for the presentation of a symbol may
result in poor P300 signal quality, and a single character flashing
paradigm enhances the P300 response [9]. Studies also demon-
strated that the performance of a BCI typing system that em-
ploys a matrix presentation paradigm depends on the gaze of the
user [10], [11]. Many potential users from the target population,
unfortunately, lack precise gaze control, and for these users, it is
anticipated that matrix paradigms will suffer from reduced per-
formance. To overcome this dependency in BCI typing systems,
different presentation schemes have been explored and shown
to have comparable performances with the matrix presentation
paradigm in terms of speed and accuracy [11]–[13]. Rapid se-
rial visual presentation (RSVP) is one of these paradigms, in
which symbols are presented sequentially in time, at a prede-
fined fixed location on the screen and in a pseudorandom order
[5], [14]–[18].
BCI typing systems can benefit greatly from a language

model in order to enhance typing speed. A probabilistic lan-
guage model can be employed to incorporate predictive word
completion during the intent detection process [19]–[21],
or to define a prior on potential target characters during the
classification task [22]–[24]. Our system, the RSVP keyboard,
originally developed based on the RSVP paradigm and now
also featuring the matrix presentation paradigm, probabilisti-
cally fuses context evidence with physiological evidence to
infer user intent. A symbol n-gram language model trained on
a large corpus provides probabilities for each character in the
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Fig. 1. The in-house BCI block diagram.

alphabet, which are fused tightly in a Bayesian fashion with
EEG evidence [5], [15], [16].
In this paper, we utilize two different matrix schemes (row

column flash and single symbol flash) and one RSVP scheme in
a BCI typing interface and compare the differences in measured
signal quality, typing speed, and accuracy. In a similar study,
Chennu et al., through an offline study, have shown that the
classification accuracy is comparable between RSVP and ma-
trix based paradigms, but without a language model the typing
speed is relatively low while utilizing the RSVP paradigm [13].
In this study, we also compare the typing performance during
online typing of both RSVP and matrix paradigms, using the
aforementioned language-model-assisted BCI.
The contributions of this paper areas follows:
1) building a unified framework for different presentation

paradigms that utilize EEG and language model evidence
for joint decision making;

2) conducting real-time and offline comparisons among dif-
ferent presentation schemes;

3) analyzing the effect of different presentation paradigms on
the EEG signal quality.

II. GENERAL SYSTEM SPECIFICATIONS

The complete operational flowchart of the language-model-
assisted BCI typing system is illustrated in Fig. 1. The system
has the following main components: (A) a presentation com-
ponent that controls the presentation scheme, (B) a feature ex-
traction component that converts raw EEG evidence into a
likelihood for Bayesian fusion and (C) a decision making com-
ponent that fuses EEG (physiology) and language evidence to
infer user intent. In the following, we describe these components
in some more detail.

A. Presentation Component

1) Definitions: Let a a a a be the set
of all possible symbols, typically including the letters in the
(English) alphabet, numerical symbols, space and backspace
symbols (represented here by and , respectively). Let

be the set of all subsets of ; .
represents the cardinality of .
A “trial” in the matrix based presentation scheme flashes a

subset that can contain multiple characters, i.e., , and
in RSVP, it presents a single symbol; i.e., . A “flash” is
the presentation of a trial. A “sequence” is a series of consec-
utive flashes of trials with no gap in between. After presenting
each sequence, the system updates the posterior probabilities
of every symbol in the alphabet using the new EEG evi-
dence and tries to make an inference about user intent. How-
ever, a decision is not made until a predefined confidence level
is reached.1 Therefore, the system may need to present multiple
sequences before a decision can be made. We define the collec-
tion of sequences, at the end of which one symbol is selected,
as an “epoch”.
2) Matrix Presentation: Typically, in noninvasive

EEG-based typing BCIs with the matrix presentation paradigm,
symbols are arranged in an matrix with number of
rows and number of columns [1]. Subsets of these symbols
are intensified usually in pseudorandom order to produce an
odd ball paradigm to induce ERP responses.
Trials in a sequence typically cover all the

symbols in the matrix, that is . When each trial
contains exactly all the symbols in a row or a column of

the matrix layout with [4], this setup is known
as the row-and-column presentation (RCP) paradigm. RCP re-
quires that all the symbols in would be flashed twice and

, . In this study, we utilize a matrix of size
4 7, which leads to the best coverage of the widescreen mon-
itors used in our experiments. It has been claimed that the prob-
ability of target character in each sequence’s flash set should be
lower than 25% to induce the P300 response [4]. In this grid
setup for RCP, each sequence contains 11 flashes, two of which
include the target symbol. Therefore, the probability of each
target trial in each sequence is , which satisfies
the threshold suggested above.
A single-character presentation (SCP) paradigm is also a

widely used scheme. SCP was shown to increase the P300
signal quality compared with RCP [9]. In this paradigm, each
trial contains single symbols, i.e., , and assuming there
is no repetition in a sequence, ; . With enough
number of flashes in a sequence, we can satisfy the
suggested condition for target probability.
3) Rapid Serial Visual Presentation (RSVP): RSVP is a pre-

sentation technique in which trials are presented one at a time
at a fixed predefined location on the screen at a rapid rate and in
a pseudorandom order [1], [5]. If a BCI user’s desired symbol
exists in a sequence of trials presented in RSVP fashion, a P300

1In the current implementation, confidence is measured by the maximum pos-
terior probability over ; this corresponds to using Renyi entropy of order as
the measure of uncertainty. Other entropy definitions such as Shannon’s could
also be used.
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response is elicited by the target in the EEG signal. RSVP is
similar to SCP in that each presentation subset includes only
a single symbol; however, RSVP decreases the dependency on
gaze control. Presenting 28 symbols in an RSVP paradigm is
time consuming; therefore, a typical RSVP-based BCI system
can only achieve a speed of five symbols/minute if each se-
quence contains the entire alphabet [5], [16]–[18]. However,
recent efforts to speed up typing with this presentation para-
digm showed that using context information (such as a language
model) and careful selection of subsets of a in each sequence
may significantly improve typing speed and accuracy [5], [15],
[16], [19], [21].

B. Feature Extraction Component

The EEG signals are acquired using a g.USBamp biosignal
amplifier with active g.Butterfly electrodes at a sampling rate of
256 Hz, from 16 EEG sites (according to the International 10/20
configuration): Fp1, Fp2, F3, F4, Fz, Fc1, Fc2, Cz, P1, P2, C1,
C2, Cp3, Cp4, P5, and P6. To improve the signal-to-noise ratio
(SNR) and to eliminate drifts, signals were filtered by an FIR
linear-phase bandpass filter passing [1.5, 42] Hz with zero dc
gain and a notch filter at 60 Hz.
In order to capture the P300 while omitting the possible motor

EEG [8], EEG from a time window of [0,500) ms after each
flash’s onset is processed as the corresponding raw data for each
trial. As we explain later in Section III, we test our system with
healthy users; therefore the window length is chosen short to
avoid any discriminative contributions of motor-activity-related
EEG response, if any. EEG data processing continues with i)
downsampling by 2, ii) projection to a lower dimensional space
using principle component analysis (PCA) to remove directions
with negligible variance, and iii) concatenation of data from all
channels corresponding to the same trial to form a feature vector
for each trial.

C. Decision Making Component

Evidence from EEG is supported with evidence from lan-
guage structure. These two information sources are fused using
a Naïve Bayes’ assumption to make a joint decision using MAP
inference. Optimal classifier parameters for target detection are
learned using the calibration data.
1) EEG Feature Extraction and Classification: To improve

intent detection performance, the EEG feature vectors com-
puted as described above are projected in to a one-dimensional
space, which attempts to maximize the separation between
target and nontarget classes according to a measure. Specif-
ically, assuming that, in each class, feature vectors follow a
multivariate Gaussian distribution,2 quadratic discriminant
analysis (QDA) is used to project the data to minimize the
expected risk. QDA requires the inverse of the empirical co-
variance for each class. Estimating an invertible covariance
is not feasible in the practical usage of the typing system due
to the high dimensionality of the EEG feature vectors and
low number of calibration samples in each class. This issue
has been addressed by employing regularized discriminant

2The Gaussian distribution assumption here is a direct consequence of the
assumption that filtered EEG is a Gaussian random process.

analysis (RDA), which provides full-rank covariance estimates
for each class [25].
RDA uses shrinkage and regularization. Shrinkage is a linear

combination of each class covariance matrix and the overall
class-mean-subtracted covariance. Considering as a
-dimensional feature vector and as its label, which can take
values of 0 and 1 for nontarget and target classes, respectively,
the maximum-likelihood estimator for mean and covariance of
each class are

(1)

where , is the number of training feature vectors
in class , and thus , the total number of feature vectors, will
be and is the Kronecker- . [AU: Previous
sentence edited correctly for meaning?]The
shrinkage procedure manipulates the covariance matrices by

(2)

Here, is the shrinkage parameter that defines the sim-
ilarity of two classes’ covariance. leads to equal covari-
ance matrices for both classes, which turns RDA to linear dis-
criminant analysis (LDA). The regularization procedure is as
follows:

(3)

is the trace operator, is a identity matrix, and
is the regularization parameter, which determines the

circularity of the covariance matrix.
Correspondingly, the discriminant score function defined as

(4)

where is the Gaussian probability density function
when and is the prior probability of class .
In our system, we use . To find the class conditional
probability distributions of RDA scores, we use kernel density
estimation (KDE) [16]. Each class conditional KDE is calcu-
lated over the RDA scores of EEG evidence recorded for the
representative trials of that class in the calibration data set. Fi-
nally, the conditional probability density function for each class
is defined as

(5)

Here, is a suitable kernel function with bandwidth .
A Gaussian kernel is used in our system, and accordingly the
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Fig. 2. Probabilistic graphical model of the fusion rule.

kernel bandwidth for each class is calculated using the Sil-
verman rule of thumb [26] over the RDA scores for the corre-
sponding class.
2) Language Model: The system utilizes a letter n-gram

model in an iterative Bayesian framework to increase the
typing speed by prioritizing the symbols to be presented in each
sequence and by providing a prior context for intent detection.
A letter n-gram model estimates the conditional probability of
every letter in the alphabet based on previously typed
letters in a Markov model framework [27].
Therefore, in a letter n-gram model, the conditional proba-

bility of each character, according to the Bayes rule, is given by

(6)

where is the symbol (yet) to be typed at epoch and is
the string of previously written symbols. In our system,
we use a 6-gram letter model, which is trained on the New York
Times portion of the English Gigaword corpus [27].
3) Fusion: Assume a represents the EEG feature

vector of a trial, which contains a , at repetition
a in epoch where a represents the total

number of repetitions of trials containing the character a in
the same epoch. Moreover, define a as the class label for
a in epoch . The probabilistic graphical model that we
use for fusion is shown in Fig. 2.
Let a a a a a represent a
a matrix of observed EEG feature vectors in epoch . Here,
is the length of each feature vector. Accordingly, assume
a a a is a matrix, where is the

number of total flashes in epoch . Define as a possible out-
come for matrix . Using Bayes’ rule, we can define the poste-
rior probability conditioned on the prior typed text and the ob-
served EEG feature vectors as

(7)

3Lower levels consist of copying phrases that have letters that are assigned
high probabilities by the language model. As the level increases, the language
model probabilities become increasingly adversarial. Level 3 is neutral on av-
erage.

Using the proposed graphical model, given the intended symbol
, the EEG evidence and previously typed text are conditionally
independent. Moreover, given , the EEG evidences for each
trial a a a a are independent, as follows:

a
a

a a
(8)

a is the possible EEG evidence for th repetition of char-
acter a . Also for given , a s are deterministically defined.
With this assumption, (8) can be simplified as

(9)

At the end of each sequence, is
calculated for all the symbols; if the maximum of these posterior
probabilities is higher than a predefined confidence threshold,
a decision to type the corresponding symbol is made. Other-
wise, sequences are repeated until the required confidence level
is reached. If the confidence level is not reached in a prede-
fined maximum number of repetitions bound for sequences, the
symbol with the maximum a posteriori probability is chosen as
the desired symbol.

D. System Operation Modes
The developed typing interface can currently be utilized in

four different modes.
i) Calibration mode: During calibration, the users are asked

to attend to predefined target symbols within randomly
ordered sequences to record labeled EEG data. The data
acquired in this mode are then used in the estimation of
classifier parameters to be used in other system opera-
tion modes. The shrinkage and regularization parameters
are optimized during calibration using k-fold cross-vali-
dation to maximize area under the ROC curve.

ii) Copy phrase task mode: In this task, the users are given a
set of predefined phrases. Each phrase includes a missing
word and the users are asked to complete these words.
This task is designed to assess the system and/or user per-
formance in terms of speed and accuracy in the presence
of a language model.

iii) Mastery task mode: Users are trained to use the system in
this mode. It is similar to the copy phrase taskmode in that
the users are asked to type a set of predefined phrases. In
contrast, the phrases used in this task have been carefully
selected and divided into five difficulty levels based on
their predictability by the language model. As the user
completes the phrases in a level, the task continues with
the next level with more difficult sentences.3

iv) Free spelling mode. This mode allows the users to type
their desired text.

v) Simulation mode: In this mode, the copy phrase task is
completed using samples drawn from the KDE of class
conditional EEG feature distributions as computed in (5).
These samples simulate EEG evidence and are fused with
the language model probabilities for decision making as
in regular operation [16]. Probability of completing the
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task and expected task completion durations are reported
as estimated performance measures using Monte Carlo
simulations.

In this paper, we use all modes of the system for the following
experiments, except free spelling.

III. EXPERIMENTAL RESULTS

A. Experiment

In this study, we assess the system performance in three pre-
sentation scenarios:
1) 4 7 matrix row and column presentation (RCP) para-

digm;
2) 4 7 matrix single-character presentation (SCP) para-

digm;
3) rapid serial visual presentation (RSVP) paradigm.

The comparison is based on three dependent variables: signal
quality, system accuracy, and typing speed. Following a
group-based analysis, we utilize paired t-tests to determine if
the system performance varies significantly due to changes in
the presentation paradigm or inter-trial interval (ITI) values. In
addition, we perform paired t-tests within each user to assess
the variations in P300 responses due to different ITIs.
Twelve healthy volunteers, nine males and three females, be-

tween the ages of 24 and 38 years, consented to participate in
this study, which is conducted following an IRB-approved pro-
tocol. Each user participated in three sessions, each session on
a different day with the various presentation paradigms. It is
possible for a participant to gradually obtain skills to handle
the system more efficiently, thereby introducing learning effects
from session to session. To control for this effect, we relied on
quasi-randomization; we distributed the presentation paradigms
over the experimental sessions such that the number of users
who attended a session with a specific presentation paradigm
on a specific session order is kept the same (balanced). Every
session that a user attended included calibration tasks with four
different ITI values of {200, 150, 100, 85} ms. These values
are chosen to be compatible with a 60-Hz monitor refresh rate
and cover the range of possible optimum inter-trial durations.
To account for the effect of user fatigue on typing performance,
we randomized the order of ITI values for each presentation sce-
nario and among all users. We used a duty cycle of 75% for each
flash.
After calibration, each session proceeded with the mastery

task [28] followed by the copy phrase task with eight sentences.
We use a level 1 mastery task to familiarize the users with the
copy phrase task. To prevent long sessions, the system marks a
phrase as unsuccessful if more than four wrong letter selections
occur in a row, and the next phrase is presented to the user.

B. Results

1) Signal Quality: In their work, Sellers et al. show that ITI
effectively modifies the shape of the P300 response [29]. To in-
vestigate the effect of ITI on the P300 response, we analyzed
the signal quality for every presentation scheme and ITI com-
bination using the calibration data collected for different ITI
values. For such combinations, we computed the area under the

Fig. 3. Bar charts of average AUC with error bars. (a), (b), and (c) demon-
strate the accuracy statistics for each ITI, respectively, for RCP, SCP, and RSVP
paradigms. (d) reports the AUC statistics for different presentation paradigms
at ITI = 150 ms. (a) ITI comparison in RCP; (b) ITI comparison in SCP; (c) ITI
comparison in RSVP; and (d) paradigm comparison at ITI = 150 ms.

TABLE I
HYPOTHESIS TESTING RESULTS BETWEEN DIFFERENT ITIS WITHIN EACH

PARADIGM. THE NULL HYPOTHESIS IS THAT THE EXPECTED AUC DIFFERENCE
OF THE TWO CONSIDERED ITIS IS ZERO. HERE, WE USED

curve (AUC) for the ROC as the classification accuracy mea-
sure. Within each presentation paradigm, we applied a paired
t-test over these accuracy values. The results are reported in
Fig. 3(a)–(c) and Table I for each paradigm. The three subfig-
ures correspond to different presentation paradigms, and in each
subfigure, the average accuracies for different ITIs are presented
using bar-graphs with error bars. Table I summarizes the paired
t-test results between every ITI pair for each presentation para-
digm.
From Table I, we observe that the group-based hypothesis

testing does not show significant variations among classification
accuracies due to changes in ITI values for the RCP paradigm.
The results also suggest that the ITI value of 85 ms is the best
candidate for matrix RCP paradigm. This ITI offers shorter se-
quence times and a consistent higher average AUC (averaged
across users) as shown in Fig. 3(a). Our observations suggest
that ERP responses in the RCP paradigm are more robust to the
changes in ITI values.
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TABLE II
MULTIVARIATE PAIRED T-TEST RESULTS OF P300 PEAK VALUE FOR EACH SUBJECT AMONG DIFFERENT ITIS WITHIN EACH PRESENTATION PARADIGM.

THE NULL HYPOTHESIS IS THAT THE EXPECTED AUC DIFFERENCE OF THE TWO CONSIDERED ITIS IS ZERO WITHIN EACH PARADIGM. HERE,
WE USED , I.E. IF AND OTHERWISE

Fig. 4. Average ERP response to target and nontarget stimuli, for each presentation paradigm and ITI pairs for user “U8”. From top to bottom, the ITI is increasing
monotonically. (a) RCP; (b) SCP; and (c) RSVP.

The SCP paradigm with an ITI of 200 ms demonstrates the
highest average AUC with the lowest variance [Fig. 3(b)]. Al-
though average AUCs across users show an increasing trend
from ITI of 85 to 200 ms, pairwise comparisons between dif-
ferent ITIs do not show statistically significant variations in pop-
ulation AUCs (see Table I).
Generally, in matrix-based presentation paradigms, varia-

tions in ITI values seem to have a negligible effect on system
AUC. The usage of smaller ITIs might be preferable due to a
possible decrease in the sequence length, which might improve
the speed of the typing interface. Moreover, it might be viable
to optimize the matrix subset flashes based on context informa-
tion to have shorter sequence lengths and higher classification
confidence by increasing the number of flashes of probable
characters, which can lead to faster target detections.
On the other hand, accuracies with the RSVP paradigm

tend to be more sensitive to changes in ITI values (as shown
in Table I). The most significant increase in AUC happens
from ITI = 100 ms to ITI = 150 ms. The accuracy deviations
between ITI = 85 ms and ITI = 100 ms and also between
ITI = 150 ms and ITI = 200 ms are not significant as reported
in Table I. Consequently, among the ITI values tested with the
RSVP paradigm, ITI = 150 ms is the best choice for system
design, since the accuracies between ITIs of 150 and 200
ms do not significantly change while ITI = 150 ms provides

better speed. This is consistent with our previous work using
RSVP for image search [14]. In contrast with matrix-based
presentation paradigms, in the RSVP paradigm, users need to
recognize the target symbols, which induces the weaker P300
signals, especially at lower ITIs, as shown in Fig. 3(c).
To investigate signal quality variations due to ITI changes

in each presentation scheme, we extract the P300 peak values
for every target stimulus at all channels per user, for different
combinations of ITI values and presentation paradigms. In this
process, we filter the EEG signal using a Gaussian low pass
filter with 5 samples to increase the signal-to-noise ratio
(SNR). For each target trial, we define a (16 1)-dimensional
feature vector with the th element containing the peak value of
the EEG at channel in the time window [250, 350] ms after
stimulus onset. For every user and presentation paradigm, we
use these feature vectors in a multivariate paired t-test to inves-
tigate the P300 amplitude deviations across different ITI values.
We report the results in Table II. Comparing the results for dif-
ferent paradigms, we do not observe a consistent change in P300
amplitude among different ITI values. For instance, variations
in ITI can significantly change the P300 peak values of user U8
at every presentation paradigm, as illustrated in Fig. 4, while
this is not true for user U12 (see Fig. 5). Consequently, to ac-
quire the best performance, we recommend that optimum ITI be
defined uniquely for each user.
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Fig. 5. Average ERP response to target and nontarget stimuli, for each presentation paradigm and ITI pairs for user “U12”. From top to bottom, the ITI is increasing
monotonically. (a) RCP; (b) SCP; and (c) RSVP.

TABLE III
HYPOTHESIS TESTING RESULTS BETWEEN DIFFERENT PRESENTATION
PARADIGMS AT ITI = 150 ms. THE NULL HYPOTHESIS IS THAT THE

EXPECTED AUC DIFFERENCE OF THE TWO CONSIDERED
PARADIGMS IS ZERO. HERE, WE USED

2) System Accuracy Based on Presentation Paradigm: We
analyzed the changes in system classification accuracy across
different presentation paradigms. Similar to the signal quality
analysis, we employed AUC values as the measure of accu-
racy. We set ITI = 150 ms, which provides good performance
for all paradigms and is close to the ITI value typically used
for matrix based presentation paradigms (125 ms) [4]. We an-
alyzed the changes in AUC values across different presenta-
tion paradigms using a paired t-test between different presenta-
tion paradigms. We report the results in Table III. These results
do not illustrate significant changes due to different presenta-
tion paradigms. Moreover, in Fig. 3(d), we plot the AUC values
averaged over all the users for different presentation schemes.
This figure shows that the average AUC values in matrix-based
paradigms are higher than in the RSVP paradigm. However,
the paired t-test outcomes do not confirm statistically signifi-
cant separations among these average AUC values. Based on
these results, we propose that the system accuracy might be
more dependent on the user than the presentation paradigm at
ITI = 150 ms.
In Fig. 6, we plot the channel by channel significance levels

for the paired t-tests between different presentation paradigms.
From this figure, we first observe that there is no statistically
significant difference between different presentation paradigms.
This result is consistent with the results that we report in
Table III.
We also observe that there is no consistent electrode subset

that shows significant difference among different presentation
paradigms. We also plot the AUC values calculated using each
channel separately, for each user, for different presentation
paradigms, in Fig. 7. For a specific presentation paradigm, this

Fig. 6. Topography map of resulting from paired t-tests for each
channel’s AUC between each paradigm pair and across users for ITI = 150 ms.
Here, red denotes , and blue represents . (a) RCP versus
RSVP; (b) RCP versus SCP; and (c) RSVP versus SCP.

figure does not show a consistent region on the scalp, across
different users, for high accuracy.4 Based on these results,
we suggest that an optimum presentation paradigm is user
dependent.
3) Typing Speed: We analyze the differences in the typing

speed across different presentation paradigms employing the
average number of sequences per target trial as the measure
of speed-inverse (time spent per letter). Conventionally, in the
RCP paradigm, during each sequence, all rows and columns are
flashed once (which results in 11 flashes during a sequence in
this study). On the other hand, the RSVP paradigm has previ-
ously demonstrated almost optimized performance with eight
trials in a sequence [15]. Accordingly, to keep the analysis eq-
uitable, we use the average number of sequences per target trial
as the measure of time spent.We set ITI = 150 ms. In addition to
the experimental results, we also perform 20Monte Carlo simu-
lations of the copy phrase task for every user under different pre-
sentation paradigms, using the corresponding calibration EEG
data to generate simulated EEG evidence.
We report both the simulation and experimental results in

Fig. 9. For different presentation paradigms, this figure shows
the average number of sequences per target trial and task com-
pletion probabilities versus AUC values of different users. We
observe that both minimum and maximum values of user AUCs
are smaller in the RSVP paradigm than the matrix-based pre-
sentation schemes. In the RCP paradigm, each symbol is rep-
resented twice in a sequence. Subsequently, the number of data

4One may need to optimize best electrode locations for each paradigm–user
combination to maximize performance.
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Fig. 7. Topography of channel based AUCs for each user at ITI = 150 ms.

points from the target class for recorded EEG during the calibra-
tion task is twice the other paradigms. This can lead to a more
accurate estimation of classifier parameters, which then leads to
smaller average numbers of sequences per target trial and higher
task completion probability.
In general, actual typing performance in the SCP paradigm

shows a behavior consistent with simulation results. In all
paradigms, simulation results are reasonably predictive of
the actual typing task statistics for larger AUCs. Mismatch
between simulation results and actual user typing speeds is

more frequent in the RSVP paradigm. This maybe because
the user AUCs are generally lower for the RSVP paradigm,
since the requirement to recognize the target symbol might
impose more cognitive load and require more attention from
the user.5 However, some participants still show faster typing
performance with RSVP than the matrix-based presentation
schemes (see Table IV).
From this table, user U7 shows better typing performance

when using the RSVP paradigm [see Fig. 9(a)–(c)], while
users U3 and U9 spelled target phrases with a lower average
number of sequences when using SCP and RCP paradigms [see
Fig. 9(d)–(f) and (g)–(i), respectively]. Accordingly, the choice
for the best presentation scheme should be user dependent.
4) Effect of Language Model on Typing Duration: We

employ the simulation mode of the system to asses the effect
of the language model on the (estimated) performance of each
presentation paradigm. We preform [AU: "perform"?]
ten Monte Carlo simulations (of the copy phrase task) with
and without the language model to estimate the typing speed
under both conditions using calibration EEG data from each
user. We represent the typing speed as the average number of
sequences for correctly typing a character, . The results of

shown in Figs. 10(a)–(c) indicate that the language model
significantly improves the performance for all three presenta-
tion paradigms. This is seen in the form of reduced average
sequence counts required to type a target symbol correctly, as
well as reduced variance. That is, without a language model,
the mean values of are larger for all the users, and the
standard deviations of are larger for most of the partici-
pants. For RCP, users with lower AUC (larger sequence counts
for the without-LM axis) seem to increasingly benefit from the
assistance of the language model in this task [see Fig. 10(a)].
In the case of SCP [Fig. 10(b)] and RSVP [Fig. 10(c)], while
the same trend is observed for high to moderately good AUCs,
for users with the lowest several AUCs (appearing on the
right-most side of their respective plots), the consistency of
language model assistance is not as good as that in the case
of RCP. This inconsistent behavior seems to occur due to low
AUCs (for AUC ). This suggests that, for some users
with low classification performance, we may need to collect
more training samples in the calibration session for them to be
able to benefit from the language model assistance.

IV. CONCLUSION
In this paper, we compared three different presentation

paradigms: i) a 4 7 matrix row and column; ii) a 4 7 matrix
single character; and iii) a rapid serial visual presentation,
utilizing a language-model-assisted EEG-based letter-by-letter
typing BCI. The underlying intent inference engine used tight
fusion of language and EEG evidence, as described in earlier
papers on the RSVP keyboard [5], [15], [16]. Twelve partici-
pants were recruited to use the system in four different ITIs of
{85, 100, 150, 200} ms for each presentation scheme. The order
of paradigm presentations for each session, and each user were

5This claim is mainly based on the users’ feedback after each session. They
described it as more challenging to spot the desired character in the RSVP par-
adigm, especially for the sessions with smaller ITIs.
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Fig. 8. Typing speed analysis results. Average number of sequences per (typed) target character (lower means faster typing) and probability of phrase completion
(higher means more accuracy) are shown. Simulation results are used to define the shaded 90% confidence area shown. The dashed line shows the expected value
from simulation for each variable, and the solid line shows actual typing outcomes in a single experimental run that follows. (a) RCP; (b) SCP; and (c) RSVP.

Fig. 9. Number of sequences utilized by users U7, U3, and U9 to type each target character using RSVP, SCP, and RCP paradigms. Red bars show the sequence
counts for epochs that typed a wrong character, and yellow bars show the number of sequences used to fix the error before typing the correct target. Green bars
show the number of sequences in epochs that resulted in correct selection of target symbols (lower means faster typing). (a) U7, RSVP; (b) U7, SCP; (c) U7, RCP;
(d) U3, RSVP; (e) U3, SCP; (f) U3, RCP; (g) U9, RSVP; (h) U9, SCP; and (i) U9, RCP.

quasi-randomized. The same classifier, language model, and
fusion rule were used for all paradigms and ITI combinations.

Through this study, we illustrated that the best presentation
paradigm and ITI combination among the ones presented in this
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TABLE IV
TYPING SPEED RESULTS FOR EACH USER AND PARADIGM COMBINATION. HERE, “AVERAGE STANDARD DEVIATION”

OF SEQUENCE COUNT PER TARGET (CORRECTLY TYPED) SYMBOL IS REPORTED

Fig. 10. Scatter plot of the average number of sequences for correctly typing
a target character. The -axis demonstrates the mean number of sequences per
target character when no language model is used, -axis represents the mean
number of sequences required per target character while a 6-gram language
model is utilized. Each point on the figure shows the average of themean number
of sequences per target from ten Monte Carlo simulations. Horizontal skewness
of each box around a point is the standard deviation of the number of sequences
per target character for typing while no language model was used, and the ver-
tical skewness is the standard deviation in presence of the language model. (a)
RCP; (b) SCP; and (c) RSVP.

study should be identified for each user individually to achieve
the best performance. Also, we showed that the performance of
the RSVP paradigm is comparable to matrix-based presentation
paradigms with healthy users. Based on our results, we propose
that BCI typing systems capable of employing multiple presen-
tation schemes including both RSVP and matrix presentation
paradigms are inevitable. This system, after individual clinical
assessments, should be able to determine the best presentation
option and the best ITI value for each user, according to user
preferences, capabilities, EEG signal statistics, and simulations.
Moreover, the length of the calibration session might need to be
increased based on the classification performance for a user at
each presentation paradigm.
A side product of this work is that we now have a unified BCI

typing interface that has both RSVP and matrix presentation op-
tions along with aMAP intent inference engine that tightly fuses
n-gram symbol and EEG evidence. It is an open vocabulary
typing interface with the potential to be individualized by per-
sonal language models and the incorporation of supplementary
physiological and behavioral evidence about intent, for instance
via EMG or switches. Other open problems include improved
signal models for more accurate performance simulations and
run-time intent inference, optimized dynamic selection of stim-
ulus subsets to be presented in each trial for the upcoming se-
quence, and rigorous field testing to compare RSVP and matrix
presentation paradigms on potential user populations.
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Abstract—Noninvasive electroencephalography (EEG)-based
brain–computer interfaces (BCIs) popularly utilize event-related
potential (ERP) for intent detection. Specifically, for EEG-based
BCI typing systems, different symbol presentation paradigms
have been utilized to induce ERPs. In this manuscript, through an
experimental study, we assess the speed, recorded signal quality,
and system accuracy of a language-model-assisted BCI typing
system using three different presentation paradigms: a 4 7
matrix paradigm of a 28-character alphabet with row-column
presentation (RCP) and single-character presentation (SCP), and
rapid serial visual presentation (RSVP) of the same. Our analyses
show that signal quality and classification accuracy are compa-
rable between the two visual stimulus presentation paradigms. In
addition, we observe that while the matrix-based paradigm can
be generally employed with lower inter-trial-interval (ITI) values,
the best presentation paradigm and ITI value configuration is
user dependent. This potentially warrants offering both presen-
tation paradigms and variable ITI options to users of BCI typing
systems.
Index Terms—Brain–computer interface, event-related poten-

tial, matrix speller, P300, RSVP keyboard.

I. INTRODUCTION

N ONINVASIVE brain–computer interfaces (BCIs), specif-
ically those based on electroencephalography (EEG),

have become popular to safely enable people with severe motor
and speech impairments to communicate with their social
networks and interact with their environments [1]–[3]. Typing
is one of the most widely explored applications for EEG-based
BCI systems [1]. Event-related potentials (ERPs), specifically
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the P300 component of these EEG responses, are commonly
exploited by such typing interfaces for user intent detection
[4]–[7].
The pioneering work of Farwell and Donchin showed that

ERPs containing the P300 response can be used to design EEG-
based BCI typing systems [4]. They distributed 36 symbols con-
sisting of the 26 letters in the English alphabet and 10 numerical
digits across a 6 6 matrix. The rows and columns of the matrix
are flashed in a random fashion to generate an oddball paradigm
such that when the row or column that includes the symbol that
the user intends to select is flashed, an ERP containing the P300
component is elicited. This ERP is then used for target symbol
detection. P300 is a positive deflection in the scalp voltage with
a typical latency around 300 ms after the onset of an infrequent
target stimuli [8].
Despite the practice being the benchmark in matrix spellers,

flashing rows and columns for the presentation of a symbol may
result in poor P300 signal quality, and a single character flashing
paradigm enhances the P300 response [9]. Studies also demon-
strated that the performance of a BCI typing system that em-
ploys a matrix presentation paradigm depends on the gaze of the
user [10], [11]. Many potential users from the target population,
unfortunately, lack precise gaze control, and for these users, it is
anticipated that matrix paradigms will suffer from reduced per-
formance. To overcome this dependency in BCI typing systems,
different presentation schemes have been explored and shown
to have comparable performances with the matrix presentation
paradigm in terms of speed and accuracy [11]–[13]. Rapid se-
rial visual presentation (RSVP) is one of these paradigms, in
which symbols are presented sequentially in time, at a prede-
fined fixed location on the screen and in a pseudorandom order
[5], [14]–[18].
BCI typing systems can benefit greatly from a language

model in order to enhance typing speed. A probabilistic lan-
guage model can be employed to incorporate predictive word
completion during the intent detection process [19]–[21],
or to define a prior on potential target characters during the
classification task [22]–[24]. Our system, the RSVP keyboard,
originally developed based on the RSVP paradigm and now
also featuring the matrix presentation paradigm, probabilisti-
cally fuses context evidence with physiological evidence to
infer user intent. A symbol n-gram language model trained on
a large corpus provides probabilities for each character in the

1534-4320 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. The in-house BCI block diagram.

alphabet, which are fused tightly in a Bayesian fashion with
EEG evidence [5], [15], [16].
In this paper, we utilize two different matrix schemes (row

column flash and single symbol flash) and one RSVP scheme in
a BCI typing interface and compare the differences in measured
signal quality, typing speed, and accuracy. In a similar study,
Chennu et al., through an offline study, have shown that the
classification accuracy is comparable between RSVP and ma-
trix based paradigms, but without a language model the typing
speed is relatively low while utilizing the RSVP paradigm [13].
In this study, we also compare the typing performance during
online typing of both RSVP and matrix paradigms, using the
aforementioned language-model-assisted BCI.
The contributions of this paper areas follows:
1) building a unified framework for different presentation

paradigms that utilize EEG and language model evidence
for joint decision making;

2) conducting real-time and offline comparisons among dif-
ferent presentation schemes;

3) analyzing the effect of different presentation paradigms on
the EEG signal quality.

II. GENERAL SYSTEM SPECIFICATIONS

The complete operational flowchart of the language-model-
assisted BCI typing system is illustrated in Fig. 1. The system
has the following main components: (A) a presentation com-
ponent that controls the presentation scheme, (B) a feature ex-
traction component that converts raw EEG evidence into a
likelihood for Bayesian fusion and (C) a decision making com-
ponent that fuses EEG (physiology) and language evidence to
infer user intent. In the following, we describe these components
in some more detail.

A. Presentation Component

1) Definitions: Let a a a a be the set
of all possible symbols, typically including the letters in the
(English) alphabet, numerical symbols, space and backspace
symbols (represented here by and , respectively). Let

be the set of all subsets of ; .
represents the cardinality of .
A “trial” in the matrix based presentation scheme flashes a

subset that can contain multiple characters, i.e., , and
in RSVP, it presents a single symbol; i.e., . A “flash” is
the presentation of a trial. A “sequence” is a series of consec-
utive flashes of trials with no gap in between. After presenting
each sequence, the system updates the posterior probabilities
of every symbol in the alphabet using the new EEG evi-
dence and tries to make an inference about user intent. How-
ever, a decision is not made until a predefined confidence level
is reached.1 Therefore, the system may need to present multiple
sequences before a decision can be made. We define the collec-
tion of sequences, at the end of which one symbol is selected,
as an “epoch”.
2) Matrix Presentation: Typically, in noninvasive

EEG-based typing BCIs with the matrix presentation paradigm,
symbols are arranged in an matrix with number of
rows and number of columns [1]. Subsets of these symbols
are intensified usually in pseudorandom order to produce an
odd ball paradigm to induce ERP responses.
Trials in a sequence typically cover all the

symbols in the matrix, that is . When each trial
contains exactly all the symbols in a row or a column of

the matrix layout with [4], this setup is known
as the row-and-column presentation (RCP) paradigm. RCP re-
quires that all the symbols in would be flashed twice and

, . In this study, we utilize a matrix of size
4 7, which leads to the best coverage of the widescreen mon-
itors used in our experiments. It has been claimed that the prob-
ability of target character in each sequence’s flash set should be
lower than 25% to induce the P300 response [4]. In this grid
setup for RCP, each sequence contains 11 flashes, two of which
include the target symbol. Therefore, the probability of each
target trial in each sequence is , which satisfies
the threshold suggested above.
A single-character presentation (SCP) paradigm is also a

widely used scheme. SCP was shown to increase the P300
signal quality compared with RCP [9]. In this paradigm, each
trial contains single symbols, i.e., , and assuming there
is no repetition in a sequence, ; . With enough
number of flashes in a sequence, we can satisfy the
suggested condition for target probability.
3) Rapid Serial Visual Presentation (RSVP): RSVP is a pre-

sentation technique in which trials are presented one at a time
at a fixed predefined location on the screen at a rapid rate and in
a pseudorandom order [1], [5]. If a BCI user’s desired symbol
exists in a sequence of trials presented in RSVP fashion, a P300

1In the current implementation, confidence is measured by the maximum pos-
terior probability over ; this corresponds to using Renyi entropy of order as
the measure of uncertainty. Other entropy definitions such as Shannon’s could
also be used.
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response is elicited by the target in the EEG signal. RSVP is
similar to SCP in that each presentation subset includes only
a single symbol; however, RSVP decreases the dependency on
gaze control. Presenting 28 symbols in an RSVP paradigm is
time consuming; therefore, a typical RSVP-based BCI system
can only achieve a speed of five symbols/minute if each se-
quence contains the entire alphabet [5], [16]–[18]. However,
recent efforts to speed up typing with this presentation para-
digm showed that using context information (such as a language
model) and careful selection of subsets of a in each sequence
may significantly improve typing speed and accuracy [5], [15],
[16], [19], [21].

B. Feature Extraction Component

The EEG signals are acquired using a g.USBamp biosignal
amplifier with active g.Butterfly electrodes at a sampling rate of
256 Hz, from 16 EEG sites (according to the International 10/20
configuration): Fp1, Fp2, F3, F4, Fz, Fc1, Fc2, Cz, P1, P2, C1,
C2, Cp3, Cp4, P5, and P6. To improve the signal-to-noise ratio
(SNR) and to eliminate drifts, signals were filtered by an FIR
linear-phase bandpass filter passing [1.5, 42] Hz with zero dc
gain and a notch filter at 60 Hz.
In order to capture the P300 while omitting the possible motor

EEG [8], EEG from a time window of [0,500) ms after each
flash’s onset is processed as the corresponding raw data for each
trial. As we explain later in Section III, we test our system with
healthy users; therefore the window length is chosen short to
avoid any discriminative contributions of motor-activity-related
EEG response, if any. EEG data processing continues with i)
downsampling by 2, ii) projection to a lower dimensional space
using principle component analysis (PCA) to remove directions
with negligible variance, and iii) concatenation of data from all
channels corresponding to the same trial to form a feature vector
for each trial.

C. Decision Making Component

Evidence from EEG is supported with evidence from lan-
guage structure. These two information sources are fused using
a Naïve Bayes’ assumption to make a joint decision using MAP
inference. Optimal classifier parameters for target detection are
learned using the calibration data.
1) EEG Feature Extraction and Classification: To improve

intent detection performance, the EEG feature vectors com-
puted as described above are projected in to a one-dimensional
space, which attempts to maximize the separation between
target and nontarget classes according to a measure. Specif-
ically, assuming that, in each class, feature vectors follow a
multivariate Gaussian distribution,2 quadratic discriminant
analysis (QDA) is used to project the data to minimize the
expected risk. QDA requires the inverse of the empirical co-
variance for each class. Estimating an invertible covariance
is not feasible in the practical usage of the typing system due
to the high dimensionality of the EEG feature vectors and
low number of calibration samples in each class. This issue
has been addressed by employing regularized discriminant

2The Gaussian distribution assumption here is a direct consequence of the
assumption that filtered EEG is a Gaussian random process.

analysis (RDA), which provides full-rank covariance estimates
for each class [25].
RDA uses shrinkage and regularization. Shrinkage is a linear

combination of each class covariance matrix and the overall
class-mean-subtracted covariance. Considering as a
-dimensional feature vector and as its label, which can take
values of 0 and 1 for nontarget and target classes, respectively,
the maximum-likelihood estimator for mean and covariance of
each class are

(1)

where , is the number of training feature vectors
in class , and thus , the total number of feature vectors, will
be and is the Kronecker- . [AU: Previous
sentence edited correctly for meaning?]The
shrinkage procedure manipulates the covariance matrices by

(2)

Here, is the shrinkage parameter that defines the sim-
ilarity of two classes’ covariance. leads to equal covari-
ance matrices for both classes, which turns RDA to linear dis-
criminant analysis (LDA). The regularization procedure is as
follows:

(3)

is the trace operator, is a identity matrix, and
is the regularization parameter, which determines the

circularity of the covariance matrix.
Correspondingly, the discriminant score function defined as

(4)

where is the Gaussian probability density function
when and is the prior probability of class .
In our system, we use . To find the class conditional
probability distributions of RDA scores, we use kernel density
estimation (KDE) [16]. Each class conditional KDE is calcu-
lated over the RDA scores of EEG evidence recorded for the
representative trials of that class in the calibration data set. Fi-
nally, the conditional probability density function for each class
is defined as

(5)

Here, is a suitable kernel function with bandwidth .
A Gaussian kernel is used in our system, and accordingly the
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Fig. 2. Probabilistic graphical model of the fusion rule.

kernel bandwidth for each class is calculated using the Sil-
verman rule of thumb [26] over the RDA scores for the corre-
sponding class.
2) Language Model: The system utilizes a letter n-gram

model in an iterative Bayesian framework to increase the
typing speed by prioritizing the symbols to be presented in each
sequence and by providing a prior context for intent detection.
A letter n-gram model estimates the conditional probability of
every letter in the alphabet based on previously typed
letters in a Markov model framework [27].
Therefore, in a letter n-gram model, the conditional proba-

bility of each character, according to the Bayes rule, is given by

(6)

where is the symbol (yet) to be typed at epoch and is
the string of previously written symbols. In our system,
we use a 6-gram letter model, which is trained on the New York
Times portion of the English Gigaword corpus [27].
3) Fusion: Assume a represents the EEG feature

vector of a trial, which contains a , at repetition
a in epoch where a represents the total

number of repetitions of trials containing the character a in
the same epoch. Moreover, define a as the class label for
a in epoch . The probabilistic graphical model that we
use for fusion is shown in Fig. 2.
Let a a a a a represent a
a matrix of observed EEG feature vectors in epoch . Here,
is the length of each feature vector. Accordingly, assume
a a a is a matrix, where is the

number of total flashes in epoch . Define as a possible out-
come for matrix . Using Bayes’ rule, we can define the poste-
rior probability conditioned on the prior typed text and the ob-
served EEG feature vectors as

(7)

3Lower levels consist of copying phrases that have letters that are assigned
high probabilities by the language model. As the level increases, the language
model probabilities become increasingly adversarial. Level 3 is neutral on av-
erage.

Using the proposed graphical model, given the intended symbol
, the EEG evidence and previously typed text are conditionally
independent. Moreover, given , the EEG evidences for each
trial a a a a are independent, as follows:

a
a

a a
(8)

a is the possible EEG evidence for th repetition of char-
acter a . Also for given , a s are deterministically defined.
With this assumption, (8) can be simplified as

(9)

At the end of each sequence, is
calculated for all the symbols; if the maximum of these posterior
probabilities is higher than a predefined confidence threshold,
a decision to type the corresponding symbol is made. Other-
wise, sequences are repeated until the required confidence level
is reached. If the confidence level is not reached in a prede-
fined maximum number of repetitions bound for sequences, the
symbol with the maximum a posteriori probability is chosen as
the desired symbol.

D. System Operation Modes
The developed typing interface can currently be utilized in

four different modes.
i) Calibration mode: During calibration, the users are asked

to attend to predefined target symbols within randomly
ordered sequences to record labeled EEG data. The data
acquired in this mode are then used in the estimation of
classifier parameters to be used in other system opera-
tion modes. The shrinkage and regularization parameters
are optimized during calibration using k-fold cross-vali-
dation to maximize area under the ROC curve.

ii) Copy phrase task mode: In this task, the users are given a
set of predefined phrases. Each phrase includes a missing
word and the users are asked to complete these words.
This task is designed to assess the system and/or user per-
formance in terms of speed and accuracy in the presence
of a language model.

iii) Mastery task mode: Users are trained to use the system in
this mode. It is similar to the copy phrase taskmode in that
the users are asked to type a set of predefined phrases. In
contrast, the phrases used in this task have been carefully
selected and divided into five difficulty levels based on
their predictability by the language model. As the user
completes the phrases in a level, the task continues with
the next level with more difficult sentences.3

iv) Free spelling mode. This mode allows the users to type
their desired text.

v) Simulation mode: In this mode, the copy phrase task is
completed using samples drawn from the KDE of class
conditional EEG feature distributions as computed in (5).
These samples simulate EEG evidence and are fused with
the language model probabilities for decision making as
in regular operation [16]. Probability of completing the
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task and expected task completion durations are reported
as estimated performance measures using Monte Carlo
simulations.

In this paper, we use all modes of the system for the following
experiments, except free spelling.

III. EXPERIMENTAL RESULTS

A. Experiment

In this study, we assess the system performance in three pre-
sentation scenarios:
1) 4 7 matrix row and column presentation (RCP) para-

digm;
2) 4 7 matrix single-character presentation (SCP) para-

digm;
3) rapid serial visual presentation (RSVP) paradigm.

The comparison is based on three dependent variables: signal
quality, system accuracy, and typing speed. Following a
group-based analysis, we utilize paired t-tests to determine if
the system performance varies significantly due to changes in
the presentation paradigm or inter-trial interval (ITI) values. In
addition, we perform paired t-tests within each user to assess
the variations in P300 responses due to different ITIs.
Twelve healthy volunteers, nine males and three females, be-

tween the ages of 24 and 38 years, consented to participate in
this study, which is conducted following an IRB-approved pro-
tocol. Each user participated in three sessions, each session on
a different day with the various presentation paradigms. It is
possible for a participant to gradually obtain skills to handle
the system more efficiently, thereby introducing learning effects
from session to session. To control for this effect, we relied on
quasi-randomization; we distributed the presentation paradigms
over the experimental sessions such that the number of users
who attended a session with a specific presentation paradigm
on a specific session order is kept the same (balanced). Every
session that a user attended included calibration tasks with four
different ITI values of {200, 150, 100, 85} ms. These values
are chosen to be compatible with a 60-Hz monitor refresh rate
and cover the range of possible optimum inter-trial durations.
To account for the effect of user fatigue on typing performance,
we randomized the order of ITI values for each presentation sce-
nario and among all users. We used a duty cycle of 75% for each
flash.
After calibration, each session proceeded with the mastery

task [28] followed by the copy phrase task with eight sentences.
We use a level 1 mastery task to familiarize the users with the
copy phrase task. To prevent long sessions, the system marks a
phrase as unsuccessful if more than four wrong letter selections
occur in a row, and the next phrase is presented to the user.

B. Results

1) Signal Quality: In their work, Sellers et al. show that ITI
effectively modifies the shape of the P300 response [29]. To in-
vestigate the effect of ITI on the P300 response, we analyzed
the signal quality for every presentation scheme and ITI com-
bination using the calibration data collected for different ITI
values. For such combinations, we computed the area under the

Fig. 3. Bar charts of average AUC with error bars. (a), (b), and (c) demon-
strate the accuracy statistics for each ITI, respectively, for RCP, SCP, and RSVP
paradigms. (d) reports the AUC statistics for different presentation paradigms
at ITI = 150 ms. (a) ITI comparison in RCP; (b) ITI comparison in SCP; (c) ITI
comparison in RSVP; and (d) paradigm comparison at ITI = 150 ms.

TABLE I
HYPOTHESIS TESTING RESULTS BETWEEN DIFFERENT ITIS WITHIN EACH

PARADIGM. THE NULL HYPOTHESIS IS THAT THE EXPECTED AUC DIFFERENCE
OF THE TWO CONSIDERED ITIS IS ZERO. HERE, WE USED

curve (AUC) for the ROC as the classification accuracy mea-
sure. Within each presentation paradigm, we applied a paired
t-test over these accuracy values. The results are reported in
Fig. 3(a)–(c) and Table I for each paradigm. The three subfig-
ures correspond to different presentation paradigms, and in each
subfigure, the average accuracies for different ITIs are presented
using bar-graphs with error bars. Table I summarizes the paired
t-test results between every ITI pair for each presentation para-
digm.
From Table I, we observe that the group-based hypothesis

testing does not show significant variations among classification
accuracies due to changes in ITI values for the RCP paradigm.
The results also suggest that the ITI value of 85 ms is the best
candidate for matrix RCP paradigm. This ITI offers shorter se-
quence times and a consistent higher average AUC (averaged
across users) as shown in Fig. 3(a). Our observations suggest
that ERP responses in the RCP paradigm are more robust to the
changes in ITI values.
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TABLE II
MULTIVARIATE PAIRED T-TEST RESULTS OF P300 PEAK VALUE FOR EACH SUBJECT AMONG DIFFERENT ITIS WITHIN EACH PRESENTATION PARADIGM.

THE NULL HYPOTHESIS IS THAT THE EXPECTED AUC DIFFERENCE OF THE TWO CONSIDERED ITIS IS ZERO WITHIN EACH PARADIGM. HERE,
WE USED , I.E. IF AND OTHERWISE

Fig. 4. Average ERP response to target and nontarget stimuli, for each presentation paradigm and ITI pairs for user “U8”. From top to bottom, the ITI is increasing
monotonically. (a) RCP; (b) SCP; and (c) RSVP.

The SCP paradigm with an ITI of 200 ms demonstrates the
highest average AUC with the lowest variance [Fig. 3(b)]. Al-
though average AUCs across users show an increasing trend
from ITI of 85 to 200 ms, pairwise comparisons between dif-
ferent ITIs do not show statistically significant variations in pop-
ulation AUCs (see Table I).
Generally, in matrix-based presentation paradigms, varia-

tions in ITI values seem to have a negligible effect on system
AUC. The usage of smaller ITIs might be preferable due to a
possible decrease in the sequence length, which might improve
the speed of the typing interface. Moreover, it might be viable
to optimize the matrix subset flashes based on context informa-
tion to have shorter sequence lengths and higher classification
confidence by increasing the number of flashes of probable
characters, which can lead to faster target detections.
On the other hand, accuracies with the RSVP paradigm

tend to be more sensitive to changes in ITI values (as shown
in Table I). The most significant increase in AUC happens
from ITI = 100 ms to ITI = 150 ms. The accuracy deviations
between ITI = 85 ms and ITI = 100 ms and also between
ITI = 150 ms and ITI = 200 ms are not significant as reported
in Table I. Consequently, among the ITI values tested with the
RSVP paradigm, ITI = 150 ms is the best choice for system
design, since the accuracies between ITIs of 150 and 200
ms do not significantly change while ITI = 150 ms provides

better speed. This is consistent with our previous work using
RSVP for image search [14]. In contrast with matrix-based
presentation paradigms, in the RSVP paradigm, users need to
recognize the target symbols, which induces the weaker P300
signals, especially at lower ITIs, as shown in Fig. 3(c).
To investigate signal quality variations due to ITI changes

in each presentation scheme, we extract the P300 peak values
for every target stimulus at all channels per user, for different
combinations of ITI values and presentation paradigms. In this
process, we filter the EEG signal using a Gaussian low pass
filter with 5 samples to increase the signal-to-noise ratio
(SNR). For each target trial, we define a (16 1)-dimensional
feature vector with the th element containing the peak value of
the EEG at channel in the time window [250, 350] ms after
stimulus onset. For every user and presentation paradigm, we
use these feature vectors in a multivariate paired t-test to inves-
tigate the P300 amplitude deviations across different ITI values.
We report the results in Table II. Comparing the results for dif-
ferent paradigms, we do not observe a consistent change in P300
amplitude among different ITI values. For instance, variations
in ITI can significantly change the P300 peak values of user U8
at every presentation paradigm, as illustrated in Fig. 4, while
this is not true for user U12 (see Fig. 5). Consequently, to ac-
quire the best performance, we recommend that optimum ITI be
defined uniquely for each user.
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Fig. 5. Average ERP response to target and nontarget stimuli, for each presentation paradigm and ITI pairs for user “U12”. From top to bottom, the ITI is increasing
monotonically. (a) RCP; (b) SCP; and (c) RSVP.

TABLE III
HYPOTHESIS TESTING RESULTS BETWEEN DIFFERENT PRESENTATION
PARADIGMS AT ITI = 150 ms. THE NULL HYPOTHESIS IS THAT THE

EXPECTED AUC DIFFERENCE OF THE TWO CONSIDERED
PARADIGMS IS ZERO. HERE, WE USED

2) System Accuracy Based on Presentation Paradigm: We
analyzed the changes in system classification accuracy across
different presentation paradigms. Similar to the signal quality
analysis, we employed AUC values as the measure of accu-
racy. We set ITI = 150 ms, which provides good performance
for all paradigms and is close to the ITI value typically used
for matrix based presentation paradigms (125 ms) [4]. We an-
alyzed the changes in AUC values across different presenta-
tion paradigms using a paired t-test between different presenta-
tion paradigms. We report the results in Table III. These results
do not illustrate significant changes due to different presenta-
tion paradigms. Moreover, in Fig. 3(d), we plot the AUC values
averaged over all the users for different presentation schemes.
This figure shows that the average AUC values in matrix-based
paradigms are higher than in the RSVP paradigm. However,
the paired t-test outcomes do not confirm statistically signifi-
cant separations among these average AUC values. Based on
these results, we propose that the system accuracy might be
more dependent on the user than the presentation paradigm at
ITI = 150 ms.
In Fig. 6, we plot the channel by channel significance levels

for the paired t-tests between different presentation paradigms.
From this figure, we first observe that there is no statistically
significant difference between different presentation paradigms.
This result is consistent with the results that we report in
Table III.
We also observe that there is no consistent electrode subset

that shows significant difference among different presentation
paradigms. We also plot the AUC values calculated using each
channel separately, for each user, for different presentation
paradigms, in Fig. 7. For a specific presentation paradigm, this

Fig. 6. Topography map of resulting from paired t-tests for each
channel’s AUC between each paradigm pair and across users for ITI = 150 ms.
Here, red denotes , and blue represents . (a) RCP versus
RSVP; (b) RCP versus SCP; and (c) RSVP versus SCP.

figure does not show a consistent region on the scalp, across
different users, for high accuracy.4 Based on these results,
we suggest that an optimum presentation paradigm is user
dependent.
3) Typing Speed: We analyze the differences in the typing

speed across different presentation paradigms employing the
average number of sequences per target trial as the measure
of speed-inverse (time spent per letter). Conventionally, in the
RCP paradigm, during each sequence, all rows and columns are
flashed once (which results in 11 flashes during a sequence in
this study). On the other hand, the RSVP paradigm has previ-
ously demonstrated almost optimized performance with eight
trials in a sequence [15]. Accordingly, to keep the analysis eq-
uitable, we use the average number of sequences per target trial
as the measure of time spent.We set ITI = 150 ms. In addition to
the experimental results, we also perform 20Monte Carlo simu-
lations of the copy phrase task for every user under different pre-
sentation paradigms, using the corresponding calibration EEG
data to generate simulated EEG evidence.
We report both the simulation and experimental results in

Fig. 9. For different presentation paradigms, this figure shows
the average number of sequences per target trial and task com-
pletion probabilities versus AUC values of different users. We
observe that both minimum and maximum values of user AUCs
are smaller in the RSVP paradigm than the matrix-based pre-
sentation schemes. In the RCP paradigm, each symbol is rep-
resented twice in a sequence. Subsequently, the number of data

4One may need to optimize best electrode locations for each paradigm–user
combination to maximize performance.
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Fig. 7. Topography of channel based AUCs for each user at ITI = 150 ms.

points from the target class for recorded EEG during the calibra-
tion task is twice the other paradigms. This can lead to a more
accurate estimation of classifier parameters, which then leads to
smaller average numbers of sequences per target trial and higher
task completion probability.
In general, actual typing performance in the SCP paradigm

shows a behavior consistent with simulation results. In all
paradigms, simulation results are reasonably predictive of
the actual typing task statistics for larger AUCs. Mismatch
between simulation results and actual user typing speeds is

more frequent in the RSVP paradigm. This maybe because
the user AUCs are generally lower for the RSVP paradigm,
since the requirement to recognize the target symbol might
impose more cognitive load and require more attention from
the user.5 However, some participants still show faster typing
performance with RSVP than the matrix-based presentation
schemes (see Table IV).
From this table, user U7 shows better typing performance

when using the RSVP paradigm [see Fig. 9(a)–(c)], while
users U3 and U9 spelled target phrases with a lower average
number of sequences when using SCP and RCP paradigms [see
Fig. 9(d)–(f) and (g)–(i), respectively]. Accordingly, the choice
for the best presentation scheme should be user dependent.
4) Effect of Language Model on Typing Duration: We

employ the simulation mode of the system to asses the effect
of the language model on the (estimated) performance of each
presentation paradigm. We preform [AU: "perform"?]
ten Monte Carlo simulations (of the copy phrase task) with
and without the language model to estimate the typing speed
under both conditions using calibration EEG data from each
user. We represent the typing speed as the average number of
sequences for correctly typing a character, . The results of

shown in Figs. 10(a)–(c) indicate that the language model
significantly improves the performance for all three presenta-
tion paradigms. This is seen in the form of reduced average
sequence counts required to type a target symbol correctly, as
well as reduced variance. That is, without a language model,
the mean values of are larger for all the users, and the
standard deviations of are larger for most of the partici-
pants. For RCP, users with lower AUC (larger sequence counts
for the without-LM axis) seem to increasingly benefit from the
assistance of the language model in this task [see Fig. 10(a)].
In the case of SCP [Fig. 10(b)] and RSVP [Fig. 10(c)], while
the same trend is observed for high to moderately good AUCs,
for users with the lowest several AUCs (appearing on the
right-most side of their respective plots), the consistency of
language model assistance is not as good as that in the case
of RCP. This inconsistent behavior seems to occur due to low
AUCs (for AUC ). This suggests that, for some users
with low classification performance, we may need to collect
more training samples in the calibration session for them to be
able to benefit from the language model assistance.

IV. CONCLUSION
In this paper, we compared three different presentation

paradigms: i) a 4 7 matrix row and column; ii) a 4 7 matrix
single character; and iii) a rapid serial visual presentation,
utilizing a language-model-assisted EEG-based letter-by-letter
typing BCI. The underlying intent inference engine used tight
fusion of language and EEG evidence, as described in earlier
papers on the RSVP keyboard [5], [15], [16]. Twelve partici-
pants were recruited to use the system in four different ITIs of
{85, 100, 150, 200} ms for each presentation scheme. The order
of paradigm presentations for each session, and each user were

5This claim is mainly based on the users’ feedback after each session. They
described it as more challenging to spot the desired character in the RSVP par-
adigm, especially for the sessions with smaller ITIs.
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Fig. 8. Typing speed analysis results. Average number of sequences per (typed) target character (lower means faster typing) and probability of phrase completion
(higher means more accuracy) are shown. Simulation results are used to define the shaded 90% confidence area shown. The dashed line shows the expected value
from simulation for each variable, and the solid line shows actual typing outcomes in a single experimental run that follows. (a) RCP; (b) SCP; and (c) RSVP.

Fig. 9. Number of sequences utilized by users U7, U3, and U9 to type each target character using RSVP, SCP, and RCP paradigms. Red bars show the sequence
counts for epochs that typed a wrong character, and yellow bars show the number of sequences used to fix the error before typing the correct target. Green bars
show the number of sequences in epochs that resulted in correct selection of target symbols (lower means faster typing). (a) U7, RSVP; (b) U7, SCP; (c) U7, RCP;
(d) U3, RSVP; (e) U3, SCP; (f) U3, RCP; (g) U9, RSVP; (h) U9, SCP; and (i) U9, RCP.

quasi-randomized. The same classifier, language model, and
fusion rule were used for all paradigms and ITI combinations.

Through this study, we illustrated that the best presentation
paradigm and ITI combination among the ones presented in this
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TABLE IV
TYPING SPEED RESULTS FOR EACH USER AND PARADIGM COMBINATION. HERE, “AVERAGE STANDARD DEVIATION”

OF SEQUENCE COUNT PER TARGET (CORRECTLY TYPED) SYMBOL IS REPORTED

Fig. 10. Scatter plot of the average number of sequences for correctly typing
a target character. The -axis demonstrates the mean number of sequences per
target character when no language model is used, -axis represents the mean
number of sequences required per target character while a 6-gram language
model is utilized. Each point on the figure shows the average of themean number
of sequences per target from ten Monte Carlo simulations. Horizontal skewness
of each box around a point is the standard deviation of the number of sequences
per target character for typing while no language model was used, and the ver-
tical skewness is the standard deviation in presence of the language model. (a)
RCP; (b) SCP; and (c) RSVP.

study should be identified for each user individually to achieve
the best performance. Also, we showed that the performance of
the RSVP paradigm is comparable to matrix-based presentation
paradigms with healthy users. Based on our results, we propose
that BCI typing systems capable of employing multiple presen-
tation schemes including both RSVP and matrix presentation
paradigms are inevitable. This system, after individual clinical
assessments, should be able to determine the best presentation
option and the best ITI value for each user, according to user
preferences, capabilities, EEG signal statistics, and simulations.
Moreover, the length of the calibration session might need to be
increased based on the classification performance for a user at
each presentation paradigm.
A side product of this work is that we now have a unified BCI

typing interface that has both RSVP and matrix presentation op-
tions along with aMAP intent inference engine that tightly fuses
n-gram symbol and EEG evidence. It is an open vocabulary
typing interface with the potential to be individualized by per-
sonal language models and the incorporation of supplementary
physiological and behavioral evidence about intent, for instance
via EMG or switches. Other open problems include improved
signal models for more accurate performance simulations and
run-time intent inference, optimized dynamic selection of stim-
ulus subsets to be presented in each trial for the upcoming se-
quence, and rigorous field testing to compare RSVP and matrix
presentation paradigms on potential user populations.
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