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Abstract

Query selection for latent variable estimation is conventionally performed by opting for 

observations with low noise or optimizing information theoretic objectives related to reducing the 

level of estimated uncertainty based on the current best estimate. In these approaches, typically the 

system makes a decision by leveraging the current available information about the state. However, 

trusting the current best estimate results in poor query selection when truth is far from the current 

estimate, and this negatively impacts the speed and accuracy of the latent variable estimation 

procedure. We introduce a novel sequential adaptive action value function for query selection 

using the multi-armed bandit (MAB) framework which allows us to find a tractable solution. For 

this adaptive-sequential query selection method, we analytically show: (i) performance 

improvement in the query selection for a dynamical system, (ii) the conditions where the model 

outperforms competitors. We also present favorable empirical assessments of the performance for 

this method, compared to alternative methods, both using Monte Carlo simulations and human-in-

the-loop experiments with a brain computer interface (BCI) typing system where the language 

model provides the prior information.
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I. Introduction

Recursive state estimation contributes a key role in signal processing and system 

identification. The recursive paradigm is often used to extract information from model 

parameters or the states of a dynamic system in real time, given noisy observations. On the 

other hand, Bayesian methods are valuable decision making approaches, since they take into 

account a variety of prior knowledge about the system due to the experience and previous 

observations (history). In stochastic dynamic systems, to estimate the state variables, 

maximum a posteriori (MAP) inference is commonly used. To estimate the state with a high 

confidence (usually pre-defined), the system probes the environment through multiple 

recursions of sequences of queries, which reduces the rate of state estimation convergence. 

Therefore, the queries need to be designed specifically to optimize both the speed and the 

accuracy of the state estimation. Query selection/optimization in the recursive state 

estimation is often performed by greedy selections using: (i) expected posterior 
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maximization [1]; (ii) Fisher information-based approaches [2], [3], and (iii) information 

theory-based approaches such as entropy minimization or maximum mutual information 

(MMI) [4], [5], [6], [7]. It is shown that all these approaches for optimum sequence design 

through query selection lead to the selection of N-best queries with respect to the current 

belief [8], [9].

In estimation problems, the system may have access to an additional knowledge called prior 

information on the state of the system which can improve the estimation process. However, 

imprecise prior information may lead to incorrect posterior beliefs given the same set of 

observations. Accordingly, choosing the N-best queries by trusting the current belief does 

not always offer the best query optimization. In dynamic systems, the prior information 

about the environment can be adversarial due to the transition noise, observation noise, 

change of environment distributions and being outdated; hence resulting in longer decision 

cycles or the wrong state estimation [10], [11]. Many applications involving state estimation, 

system identification or sequential decision making using prior information encounter these 

challenges: recommender systems [12], coimnunication networks [13], [14], radar systems 

[15] and clinical studies [16], [17]. The common problem in all of these applications is that 

the misleading information can extremely impact the final decision or estimation. Another 

category of methods to overcome the misleading information, is variance based methods 

[15], [18], [19] that can be extended using Fisher information [20] to either explore or 

exploit. The main drawback of these methods is that they only commit to either explore or 

exploit for the query selection, which leads to the same solution provided by the N-best 
method [8], [9].

In this paper, we propose an information theoretic query selection to discard the ambiguity 

(exploitation) in the state estimation while also measuring the credibility of the prior 

information (exploration). The proposed objective function is a linear combination of 

exploration and exploitation. Moreover, we reformulate the query selection as a multi-armed 

bandit (MAB) problem. We denote this framework as MAB based on State-Measurement-

MI and State-Posterior-Momentum for RBSE. The MAB framework is a well-studied 

approach to formulate the learning process under available observations [21], [22], [23], 

[24]. MAB has been proposed for decision making, predictive entropy search for sequential 

action selection and estimation applications [25], [26], [27], [28], [29], [30]. Such 

applications consider sequential selection based on MAB, in which the approaches can be 

considered to repeatedly make choices among elements of a finite set of state elements [28], 

[25]. Such a formulation enables us to analytically demonstrate that the proposed policy for 

query selection containing exploration and exploitation performs at least as good as the 

methods that only rely on the exploitation of the current belief. MAB framework also 

enables the formulation of subset query selection optimization as a tractable problem 

especially through sequential selection with theoretical guarantees [31], [21].

The novel contributions of this paper can be summarized in: (i) introducing a new action-

value function for query selection using changes in the posterior to encourage exploration in 

the MAB setting, (ii) providing a short-term policy evaluation to demonstrate that the 

proposed method has theoretical guarantees under certain assumptions, and (iii) evaluating 

the proposed method in an actual human-in-the-loop typing scheme employing a language-
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model-assisted Electroencephalogram (EEG)- based BCI typing system called RSVP 

Keyboard. Because of space limitations, we present the proofs of analytical propositions in 

the supplementary material. The system code is under revision and the current version can 

be accessed at https://github.com/BciPy [32].

II. Preliminaries

In the framework of the state estimation problem, We refer σ as the (unknown) state which is 

an element of a finite set 𝒜. The system (learner) proceeds with the estimation through a 

sequential decision making process containing sequences indexed by s of multiple trials 

indexed by i. We denote a list of variables with {:}, for example Φ0:s represents a sequence 

of variables from 0 to s. The query and evidence sets at sequence s are denoted by 

Φs ≜ {ϕs
1, …, ϕs

K} and εs ≜ {εs
1, …, εs

K}, respectively. Here, K ∈ ℕ denotes number of trials in a 

sequence. We use the query class definition presented in [8] and assume each σ has a 

corresponding query defined with the class conditional representation. Therefore, without 

loss of generality, it is assumed that all of the observations are noisy and comes from two 

unimodal probability distributions conditioned on state and query tuples. Assuming all trials 

are independent and the current observation is only function of the current query and 

independent of the task history, ℋs ≜ {ε1:s, Φ1:s}, the posterior probability at time s can be 

expressed as:

p(σ ∣ εs, Φs, ℋs − 1) = p(σ ∣ ℋ0) ∏
j = 1

s
∏

i = 1

ti p(ε j
i ∣ σ, ϕ j

i )

p(ε j
i ∣ ϕ j

i )

where p(σ ∣ ℋ0) is a prior information. Using maximum a posteriori (MAP) estimation [16] 

the learner attempts to estimate σ with re-occuring evidence collection. Based on the 

collected evidence if a decision is not possible, the system decides on a subset of queries for 

the upcoming sequence to improve its confidence. Accordingly, the query selection process 

is formulated by the following optimization:

Φs = arg max
Φ

qs(ε1:s − 1, Φ1:s − 1, Φ) (1)

where qs denotes the objective term, which we call it action-value function. Following 

querying, evidence εs is observed and accordingly the posterior is updated. In next section 

we propose an action value function that balances exploration and exploitation.

III. Method and Analysis

By imposing the MAB settings to the context of the state estimation problem, each query 

can be represented as an arm of a MAB. This reformulation allows us to solve the subset 

selection problem through a greedy approach by optimizing the action value function for 

each arm with theoretical guarantees [31]. Therefore, selection of arms (queries in each 

sequence) with highest action value one by one allows us to form the query in a 
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computationally efficient way. In MAB formulation, for the design of upcoming sequence, 

we assume that multiple arms are pulled according to the state posterior probability that 

depends on the task history. The goal is then to define an objective that specifies the subset 

of queries (arms) to be picked at each step. Independency between trails allows us to 

perform optimization per trial at each sequence. Therefore, set optimization in (1) reduces to 

single query selection.

Conventionally, query selection is achieved through MMI [6], [5], which is equivalent to 

entropy minimization when the evidence εs corresponding to the sequence being designed is 

not observed; and hence, σ is independent from ϕs. Query selection using mutual 

information can be written as the following policy:

ϕs
i = arg max

ϕ
I(σ, εs

i ∣ ϕ, ℋs − 1)

= arg max
ϕ

− H(σ ∣ εs
i , ϕ, ℋs − 1)

(2)

In this paper, we consider three different action-value functions for the MAB formulation: (i) 

mutual information objective (2) (ii) history-based objective (iii) combination of (i) and (ii).

We introduce a new term called Momentum that is function of posterior changes across 

sequences, such that:

m(ϕ ∣ ℋ j) = Ep(σ ∣ ℋ j − 1) log p(σ ∣ ε j
i , ϕ, ℋ j − 1) − log p(σ ∣ ℋ j − 1) 𝟙ϕ(σ) (3)

where 𝟙ϕ(σ) denotes the indicator function which equates 1 if ϕ = σ Since m(ϕ ∣ ℋ j) is the 

summation of probability displacement multiplied by the probability mass along axes of the 

state space, we call it Momentum. Additionally, m(ϕ ∣ ℋ0) = 0, ∀ϕ, in words, without 

collecting any evidence we can not infer the trend of a particular state in estimation. 

Accordingly, for the history-based approach, the objective is defined as the average of 

Momentum as follows.

M(ϕ ∣ ℋs − 1) = 1
s − 1 ∑

j = 1

s − 1
m(ϕ ∣ ℋ j)𝟙Φ j

(ϕ) (4)

For this approach, the query selection policy becomes:

ϕs
i = arg max

ϕ
M(ϕ ∣ ℋs − 1) (5)
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We present a new action-value function for the query selection based on combination of 

mutual information and history-based objectives in (4) to balance exploration and 

exploitation. Accordingly, the action-value function and policy can be defined as:

qs
i(ϕ) = I(σ, εs

i ∣ ϕ, ℋs − 1) + λM(ϕ ∣ ℋs − 1), λ ≥ 0 (6)

ϕs
i = arg max

ϕ
qs(ϕ)

= arg max
ϕ

− H(σ ∣ εs
i , ϕ, ℋs − 1) + λM(ϕ ∣ ℋs − 1)

(7)

where, λ is a tuning parameter that balances MMI and Momentum-based policies. The 

objective function (7) can be written as (8) by replacing the entropy term as shown in our 

previous work [8].

ϕs
i = arg max

ϕ
Ep(σ ∣ ℋs − 1)

E
p(εs

i ∣ σ, ϕ)
log p(εs

i ∣ σ, ϕ)

− log p(εs
i ∣ ϕ) + λ

s − 1 ∑
j = 1

s − 1
m(ϕ ∣ ℋ j)𝟙Φ j

(ϕ)
(8)

For the same given task history, we show that when policy in (8) is used in MAB 

formulation, the target state has higher probability to be chosen to appear in the query subset 

compared to other policies in (2) and (5). Here we propose the analysis of the correctness of 

the statement. To save space we use I(a, εs
i ∣ ϕ = a, ℋs − 1) = Is(a) and 

M(ϕ = b ∣ ℋs − 1) = Ms(a) notations for the following lemmas.

Lemma 1. Given a, b ∈ 𝒜 where a ≠ b and λ ≥ 0, if ∃ ℋs − 1 s.t. p(a ∣ ℋs − 1) < p(b ∣ ℋs − 1), 

then

p Is(a) + λMs(a) > Is(b) + λMs(b) ≥ p Is(a) > Is(b)

Lemma 1 shows that the probability of a (assuming to be the target state) having a higher 

action-value than b is larger when policy (8) is used instead of (2). Although the probability 

of a given, the task history is lower than the probability of b given the task history. This 

means that even if a is less likely than b according to the prior information and observations, 

using the proposed policy, a has more chance to appear in the query subset compared to 

policy in (2).

Lemma 2. Given a, b ∈ 𝒜 where a ≠ b and λ ≥ 0, if ∃ ℋs − 1 s.t. p(a ∣ ℋs − 1) > p(b ∣ ℋs − 1), 

then
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p Is(a) + λMs(a) > Is(b) + λMs(b) ≥ p Ms(a) > Ms(b)

Lemma 2 represents the case where the prior knowledge is supporting a rather than being 

adversarial. It shows that compared to using (4) as the action-value function, when a 
(unknown state) has higher probability given the task history compared to b, using action 

value function (6) has higher probability to choose a. These two lemmas show that the 

proposed query selection policy provides a balance between (2) and (5), and accordingly 

between the adversarial and supporting prior information. This balance is achieved through 

the selection of λ. Detailed proofs of Lemmas are provided in the Supplementary Materials.

The query λ should be updated dynamically such that the emphasis on mutual information 

component of the proposed function is increased with the number of sequences; i.e., the λ 
value should be decreased as the number of sequences is increasing [33]. We introduce a 

theorem that defines upper and lower bounds for the λ value to satisfy to guarantee that 

including the target state in the selected subset has higher probability when the proposed 

policy in (8) is used in MAB formulation compared to other policies (2) and (5).

Theorem 1. Let σ ∈ 𝒜 be the target state and ∣ 𝒜 ∣ represent the size of the finite set 𝒜. 

Consider three query selection policies as follows:

ϕi, s
π1 = arg max

ϕ
I(σ, εs

i ∣ ϕ, ℋs − 1)

ϕi, s
π2 = arg max

ϕ
M(ϕ ∣ ℋs − 1)

ϕi, s
π3 = arg max

ϕ
I(σ, εs

i ∣ ϕ, ℋs − 1) + λM(ϕ ∣ ℋs − 1) .

If p(ϕπ3 = σ) ≥ p(ϕπi = σ) for i = 1, 2, then ∃λ that satisfies

2(s − 1) ∣ 𝒜 ∣ (d
(ps

ϕ
π1

, U)

2 − d
(ps

ϕ
π3

, U)

2 )

∑ j = 1
s − 1 [d

pi, j
ϕ

π3
2 − d

pi, j
ϕ

π1
2 ]𝟙ϕ(σ)

≤ λ ≤

(s − 1)(d
(ps

π3, U)

2 − d
(ps

π2, U)

2 )

2∑ j = 1
s − 1 [log(

p(σ ∣ ε j
i , ϕ

π2, ℋ j − 1)

p(σ ∣ ε j
i , ϕ

π3, ℋ j − 1)
)]

(9)

where
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d
(pi, s

π , U)
2 = ∑

a ∈ 𝒜
p(a ∣ εs

i , ϕπ, ℋs − 1) − 1
∣ 𝒜 ∣

2

d
pi, s

π
2 = ∣ p(σ ∣ ℋs − 1) − p(σ ∣ εs

i , ϕπ, ℋs − 1) ∣2 .

This theorem shows the existence of the parameter λ makes the joint objective optimal. The 

proof of this theorem, which uses Pinsker’s Theorem [34] and the results of Lemmas 1 and 2 

can be found in the Supplementary Materials.

IV. Results

To assess the performance of the proposed query selection method, an language-model-

assisted EEG-based BCI typing system called RSVP Keyboard™ [35] has been used as a test 

framework. Ten healthy participants (six females and four males), 20-35 years old were 

recruited under IRB-130107 protocol approved by Northeastern University. A DSI-24 

Wearable Sensing EEG Headset was used for data acquisition, at a sampling rate of 300 Hz 

with active dry electrodes. EEG signals were acquired from 20 sensors according to 

International 10-20 System locations: Fp1, Fp2, Fz, F3, F4, F7, F8, Cz, C3, C4, T3, T4, T5, 

T6, P3, P4, O1, O2, A1 and A2. All participants were asked to perform two sessions 

including calibration and Copy Phrase. During calibration, the users were asked to attend to 

predefined target symbols within randomly ordered sequences to enable the system learn the 

class conditional EEG evidence distributions. Here, calibration session contains 100 

sequences; each sequence includes five trials (letters); and one trial in each sequence is the 

target symbol which is displayed on the screen prior to each sequence. The time interval 

between trials is 200 ms. Optimal parameters for both target and non-target class 

distributions were learned using the calibration data which are used in Copy Phrase task. In 

Copy Phrase, participants were tasked to write a missing word in a pre-defined phrase using 

the system (a total of 6 words with various difficulties based on LM were typed). In addition 

to Copy Phrase, we also use the calibration data from each participant for BCI performance 

simulation. We present both simulation and realtime experiment results.

To evaluate the empirical performance of the proposed query selection we first utilized 

simulation. For our simulations we used conditional evidence distributions which are learned 

in the calibration session. More details about the simulation framework can be found in [35] 

study. During simulations, through Monte Carlo simulations samples from these conditional 

distributions were drawn to type ‘O’ and ‘C’ for each simulation in the phrase 

‘IT_OCCURRED_RANDOMLY’. These letters are chosen because they have different 

difficulties to be typed based on the language model (prior information). The number of 

Monte-Carlo simulations is chosen to be 500. Figure 1 shows the simulation results. Figure 1 

presents the typing performance for two users with different calibration performance which 

is quantified by the area under the receiver operating characteristics curve (AUC); AUCU1 = 

0.82 and AUCu7 = 0.67. The bar plot next to each plot shows the prior information provided 

by the language model (LM) at the beginning of a decision cycle. For instance, it can be seen 

that the LM probability for ‘O’ is very low and it is not quite likely to start a word with this 
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letter. Accordingly, MMI method highly influenced by the LM prior, needs more sequences 

to estimate the target letter. In the early sequences of the decision process, the Momentum-

based approach on average is faster than MMI to pick the intended letter for the query 

subset. Although, due to noise in the EEG evidence and miss-classification of observations, 

Momentum gets close to zero and does not pick the intended state for the query subset. 

Overall, the proposed method outperforms the other methods. However, when there is a 

likely letter like ‘C’, MMI and the proposed method perform similarly. By comparing the 

simulation results of user 1 (lower AUC) with user 7 (higher AUC), it can be seen that all of 

the query selections are faster for the user 7 with higher calibration performance. It can also 

be observed that for user 1 even when there is more overlap between class conditional 

distributions (because of low AUC), the proposed method can estimate the target letter quite 

fast. On the other hand, it is more difficult for Momentum-based approach to capture the 

target letter. Moreover, MMI also requires more number of sequences.

As described above, the participants also attended Copy Phrase sessions after the calibration. 

Each participant attended four Copy Phrase tasks with different query selection methods. 

The order of the tasks were randomly assigned for each participant to avoid the learning 

impact.

Figure 2 shows the average performance of all the query selection methods for all users 

including a statistical test results for Copy Phrase sessions. We reported the query selection 

performance in terms of two measures: accuracy in typing a letter correctly (ATL) that is the 

total number of correctly typed letters divided by the total number of typed letters and the 

information transfer rate (ITR) [36]. ITR summarizes the accuracy and speed into a single 

metric and it is commonly used to measure BCI performance. These results show that the 

proposed method outperforms the other methods both in terms of speed and accuracy. We 

used the Wilcoxon signed-rank test as a non-parametric statistical hypothesis test to perform 

a paired-comparison between the proposed method and the other query selection methods. 

The proposed method significantly enhanced the ITR compared to the other methods. Our 

statistical analysis also shows that the proposed method significantly improved the ATL 

compared to MMI and random query selection.

V. Conclusion

Being motivated by the MAB framework, we proposed a tractable solution to the subset 

query optimization for recursive Bayesian state estimation to enhance the estimation speed 

and accuracy. More specifically, a new action-value function was introduced for query 

selection, which uses a linear combination of mutual information and a momentum term 

which is a function of logarithmic changes of the posterior probability across sequences. We 

have also presented a bound for the action-value tuning parameter, which guarantees that the 

proposed query selection policy outperforms the others. An BCI typing system has been 

used as a test framework to assess the performance of the proposed method. Our results for 

both simulation and the human-in-the-loop experiment showed that the proposed method 

outperforms the alternative methods as shown by analytical results.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
Probability of the letter completion for 500 Monte-Carlo simulations for typing three target 

symbols in phrase ‘OCCURRED’. Intended symbols contain: (a)‘O’ and (b)‘C’ in the target 

phrase. Simulation results are reported for two users with different calibration performances. 

User 1 with AUC = 0.67 has lower performance than user 7 with AUC = 0.82. Bar plots 

show the LM prior probability over all typing symbols.
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Fig. 2: 
Average of information transfer rate for four query selection methods. All of the results 

belongs to 10 users attending the copy phrase task in RSVP Keyboard experiment. p 
corresponds to the Wilcoxon signed-rank test.
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