

Travel-Free CME Thin Air Thick Blood: High Altitude Medicine

Thomas DeLoughery, MD

Disclosure

The planners and presenter have nothing to disclose

Upcoming webinars

June 24: Building Your Wellness Toolkit: Promoting Connection to Joy and Purpose James Clements, MD

July 1: No Session

July 8: COVID Clotting Catastrophes Thomas DeLoughery, MD

July 15: Update on the Diabetic Foot Dave Griffin, DPM

High Altitude

 Tom DeLoughery, MD MACP FAWM @bloodman

 Oregon Health & Sciences University

DISCLOSURE

Relevant Financial Relationship(s) Speaker Bureau - None Consultant/Research – none

Overview

- Adapting to high altitude
- High altitude illnesses
 - Acute mountain sickness
 - -High altitude cerebral edema
 - -High altitude pulmonary edema

High Altitude Medicine

- 30,000,000 people live above 9000 ft
- Unique physiologic changes

MT HOOD 11,234 ft 500mmHg IN O_2 : 13 (65%) Pa O_2 : 55 85% DENALI 20,325 ft 340 mmHg $IN O_2$: 8.5 (42%) PaO_2 : 37 65%

EVEREST 29,000 ft 243 mmHg IN O_2 : 5.4(27%) Pa O_2 : 30 52%

High Altitude

- Decreased oxygen tension
- Decreased barometric pressure

 Varies with latitude
 If Everest was in Alaska, pressure
 = 222 mmHg not 243 mmHg

BAROMETRIC PRESSURE AT ALTITUDE 8848m (torr)

Table 2-5: Time of Useful Consciousness (TUC) at Various Attitudes

Altitude (ft)	Altitude (m)	Approximate TUC* (minutes)
18 000	5 486	20–30
25 000	7 620	3-5
30 000	9 144	1.5 (90 seconds)
40 000	12 192	≤0.25(15 seconds or less)

*Individual tolerance varies.

Photo: Lindsey Fell

How do we Adapt to Hypoxia???

Increase oxygen delivery to tissues

Chain of Oxygen

Lungs

- 1. Increase ventilation
 - Starts at pO_2 of 60 mmHG
 - With acclimatization increase sensitivity to pCO₂
- 2. Increased pulmonary artery pressure
 - ? Increase blood flow to all portions of lungs
 - ? Decrease V/Q mismatch
- 3. Decreased oxygen diffusion

Hypoxic Ventilatory Response

- People vary in response to hypoxia
- Genetically determined
- People with greater HVR tend do better at altitude

https://www.military-medicine.com/article/3332-who-gets-mountain-sickness.html

Exception!

- Increasing data show that climbers who reach extreme altitude have lower HVR
- Greater "ventilatory reserve" at higher altitude?
- Less energy for breathing?

Cardiac

- Decreased cardiac output

 Decreased stroke volume
 Decreased plasma volume
 Decreased heart rate
 - Protects against diffusion limitations?
- No ischemia
- Cardiac output not a limiting factor at altitude

Blood

- Changes in hematocrit
- Changes in oxygen disassociation curve

Hematocrit

- Rises with exposure to high altitude
- 2 phases
 - Dehydration (hours)
 - Drop in plasma volume of 25% in days
 - Increase red cell mass (days)
- Benefits of increased O₂ delivery by more red cells balance by decreased delivery due to increase viscosity

Hematocrit at Heights

- Sea Level
 - **-40-45%**
- High altitude natives
 - -Andes 55-60%
 - -Sherpas 50-55%
- AMREE
 - -17,000 ft 50%
 - -21,000 ft 53%

O₂ Disassociation Curve Changes

Decreased affinity for Oxygen

Baseline affinity for Oxygen

Increased affinity for Oxygen

Photo: Deb Robertson

Evidence Increase O₂ Affinity is Beneficial

- High altitude animals
 Sheep with high affinity polymorphism
- Human studies
- "Human Ilamas" study

Human Llamas

- High affinity hemoglobin
- At altitude (14,000ft)
 –No change in EPO
 –No decrease in exercise ability
- J Clin Invest. 1978 Sep; 62(3): 593-600

Tibetans

- Evolved in high altitudes
- Tibetans
 - Less erythrocytosis
 - -Lower P50

-Altitude adaptation legendary

EPAS1 (HIF-2α)

- Found in Tibetan populations
- Decreased HIF pathway sensitive to hypoxia
- Acquired from Denisovans
- Prevalence increased with altitude

Hum Genet (2016) 135:393-402

Hum Genet (2016) 135:393-402

Other Mutations

EGLN1 (PHD)
 – Reduced HIF pathway sensitivity to hypoxia

HEMATOLOGY, 2018 VOL. 23, NO. 5, 309-313

Tissues

Increase capillary density
Decrease muscle mass

Photo: Lindsey Fell

N Engl J Med 2009; 360:140-149

at an Altitude of 8400 m, during Descent from the Summit of Mount Everest.*								
Variable		Group Mean						
	1	2	3	4				
рН	7.55	7.45	7.52	7.60	7.53			
PaO₂ (mm Hg)†	29.5	19.1	21.0	28.7	24.6			
PaCO ₂ (mm Hg)†	12.3	15.7	15.0	10.3	13.3			
Bicarbonate (mmol/liter)‡	10.5	10.67	11.97	9.87	10.8			
Base excess of blood‡	-6.3	-9.16	-6.39	-5.71	-6.9			
Lactate concentration (mmol/liter)	2.0	2.0	2.9	1.8	2.2			
SaO ₂ (%)‡	68.1	34.4	43.7	69.7	54.0			
Hemoglobin (g/dl)§	20.2	18.7	18.8	19.4	19.3			
Respiratory exchange ratio¶	0.81	0.74	0.72	0.70	0.74			
PAO ₂ — mm Hg†**	32.4	26.9	27.4	33.2	30.0			
Alveolar-arterial oxygen difference — mm Hg†	2.89	7.81	6.44	4.51	5.41			

Calculated Values for Dulmonom C

* PaCO₂ denotes partial pressure of arterial carbon dioxide, PAO₂ partial pressure of alveolar oxygen, PaO₂ partial pressure of arterial oxygen, and SaO₂ calculated arterial oxygen saturation.

† To convert the values for PaO₂, PaO₂, PaO₂, and the alveolar-arterial oxygen difference to kilopascals, multiply by 0.1333.

These values were calculated with the use of the algorithms currently approved by the Clinical Laboratory Standards Institute.¹⁰

S The values for hemoglobin are the mean values of measurements obtained at 5300 m (17,388 ft) 9 days before and 8 days after the arterial blood sampling.

The respiratory exchange ratio was measured at an elevation of 7950 m while the subject was resting.

No measured respiratory exchange ratio was available for this subject; the value was derived from the mean values for the other three subjects.

** PAO2 was calculated with the use of the full alveolar gas equation.

Table 2 Antonial Pla

Diseases of High Altitude

- Acute mountain sickness (AMS)
- High altitude pulmonary edema (HAPE)
- High altitude cerebral edema (HACE)

Epidemiology

Group	Sleep	Max	Time	AMS	HAPE	Death
Skiers	8,- 10,000	11,000	1-2	15-40%	0.1	?
Trekker	10,- 17,000	18,000	1-2	47%	1.6	1:2500
Trekker	10,- 17,000	18,000	10	23%	0.05	
Denali	10,- 18,000	20,325	1-3	50%	2-3	1:625
Rainier	10,000	14,409	1-2	67%	0.1	1:10,000

Acute Mountain Sickness

- Occurs in 6 24 hours of altitude
- Most common altitude problem
- Annoying, debilitating, and precursor of fatal syndromes

Incidence Of AMS vs Altitude

Height	%AMS	avg score
2850m (9350ft)	9%	0.85
3050m (10,000ft)	13%	1.03
3650m (12,000ft)	34%	2.11
4559m (14,950ft)	52%	3.28

AMS: Symptoms

- Headache:
 - -Key symptom
 - Throbbing
 - -Worse with valsalva
- Dizziness
- Lassitude
- Nausea/Vomiting
- Decreased urine output

Grading of AMS

- Lake Louise criteria
 - Headache (0-3)*
 - GI symptoms (0-3)*
 - Fatigue (0-3)*
 - Dizziness (0-3)*
 - Sleep difficulty (0-3)*
 - Change in mental status
 - Ataxia (0-4)
 - Peripheral edema (0-2)

AMS: Headache plus: Self-reported > 4 Total > 5

Therapy

- No further ascent
- Descent or oxygen
- Time
 - Resolves 1-3 days
- Acetazolamide
 - 125 250 mg bid
- Dexamethasone
 Rebound

Acetazolamide

C

+ **H**₂**O**

- Carbonic anhydrase inhibitor
 - Increases ventilation
 - Diuresis
- Speeds acclimatization
- Maintains oxygenation
- Treatment/prophylaxis

Forwand et al Effect of acetazolamide on acute mountain sickness. N Engl J Med. 1968 Oct 17;279(16):839-45

N Engl J Med. 1968 Oct 17;279(16):839-45

AMS: Prevention

- Slow ascents
- > 3000m no increase sleeping elevation by >500m
 - Rest day every 3-4 days
 • Acetazolamide
 • Dexamethasone

Acetazolamide

- Standard pharmacological therapy of AMS
- Two RCT show 125 mg BID effective for preventing AMS by 50-60%
 - Reduced incidence of headache
 - Reduced incidence of severe AMS
| Acetazolamide | | | | |
|---------------|----------------------|------------|---------|--|
| • RC | Т | | | |
| • 344 | 10>4300 [.] | >4928m | | |
| | Placebo | 125 mg BID | 375 BID | |
| AMS | 51% | 24% | 21% | |
| O_2 Sat | 80.7% | 82% | 82.8% | |

High Alt Med Biol. 2006 Spring;7(1):17-27.

RADICAL Trial

- 125 mg BID vs 62.5 mg BID
- $\cdot N = 73$

 62.5 mg BID
 125 mg BID

 AMS (%)
 55.3
 60.0

 Daily incidence
 6.7%
 8.9%

 LLS
 1.102
 0.097

• WEM 30:12-21, 2019

Dexamethasone

- Effective for treating AMS but does not speed up acclimatization –"Rebound"
- May be useful adjunct with acetazolamide for prevention of severe AMS

IV Iron

High Alt Med Biol. 2011 Fall;12(3):265-269

AMS: Prediction

- No good tool for predicting who will get AMS except history
- People with good HVR and good sats tend not to get AMS

Sleep Disturbances

- Poor sleep common
- Disrupted sleep

 Cheyne-Stokes breathing
- More common with high HVR
- TX: acetazolamide or zolpidem

Photo: Deb Robertson

High Altitude Cerebral Edema

- AMS with
 - Ataxia
 - Altered mental status
 - Seizures
 - Photophobia
- Rate: 1-3%
- Rapidly evolves to coma and death
 - Once coma ensures 60% fatality rate

HACE:

- Vasogenic cerebral edema
 —microbleeds
- Late stages: thrombosis

AJNR Am J Neuroradiol 40:464–69 Mar 2019

AJNR Am J Neuroradiol 40:464–69 Mar 2019

HACE: Therapy

- Descent!!!
- Dexamethasone
- Portable hyperbaric chamber
- Prevention:
 - -Same as AMS
 - Early recognition

AMS: Pathogenesis

- Hypoxia
 - -Poor HVR
- Fluid retention
- Unpredictable
- Individual susceptibility

Disorder of Fluid Regulation?

- Increased ADH, aldosterone, decrease urine output
- Increase atrial natruretic factor

Increase tissue permeability

General permeability defect?

"Tight Fit" Theory

- Hypoxia and fluid retention led to brain edema
- People with lack of "space" would suffer increase ICP and symptoms
- Evidence:
 - Vasogenic edema common in AMS/HACE
 - Preliminary evidence that brain volume to intracranial volume higher in people susceptible to AMS
 - Things that reduced edema work in AMS
- However...

"Tight Fit" Theory

- Brain swelling is minimal
 No difference AMS vs no AMS
- No evidence of ICP
- Evidence of widespread tissue damage
 - -High CK's
- Still no consensus on pathogenesis

Photo: Lindsey Fell

High Altitude Pulmonary Edema

- High altitude illness that leads to most deaths
- Occurs in 2-3 days
- Tachycardia/tachypnea
- Orthopnea
- Pink froth
- Severe hypoxia

HAPE: Incidence and Risk Groups

- Severe cases: 1-8%
- Increase lung water seen in up to 75% of climbers
- Risk groups
 Young men
 - -Cold
 - Exercise
- Increasing reports of cases at modest altitudes (1400-2400m)

HAPE: Treatment

- Descent
- Oxygen
- Gamow bag
- Nifedipine 10 mg then 30mg SR
- Nitric oxide?
- Phosphodiesterase-5 inhibitors?
- Dexamethasone?

HAPE: Prophylaxis

Slow ascents

Nifedipine 20-30 mg SR q12
Inhaled beta-agonists?

Phosphodiesterase-5 inhibitors?
Dexamethasone?

HAPE:

Phosphodiesterase-5 inhibitors

- Effective for pulmonary HTN
- 4559m study:

CNOSNO+SsPaP44+1032+633+628+5

- No change in systemic blood pressure
- Studies showed increase oxygenation
- Appears to be better than Nifedipine

HAPE: PDE-5 Inhibitor vs Dex

	Placebo	Tadalafil	Dex
HAPE	7/9 (78%)	1/8 (13%)	0/10 (0)
AMS	8/9 (89%)	<mark>8/10 (80%)</mark>	3/10(30)
LLS	7	6.5	2.5
Headache	2	2	0.5

PDE-5 Inhibitors

 Fading because of cost and concerns about increased AMS incidence

Dexamethasone

Dexamethasone

- Lowers pulmonary artery pressures
- Effective for AMS
- Needs more study

HAPE Pathogenesis

- Increased pulmonary artery pressures
 - Individual susceptibilityHypoxia
- Hydrostatic fluid leak due to stress failure of capillaries
- Then development of inflammation
 and thrombosis in later stages

High Altitude Retinopathy

- Retinal hemorrhages
- Rarely results in permanent damage
- Incidence
 - Denali: 36% at 14,200
 - Logan: 56% at 17,000
- Etiologies
 - Increased venous pressure
 - No protection from pressure surges

Altitude and Refractive Eye Surgery

- Radial keratomy:
 - Changes occurs within hours of altitude
 - Usually returns to normal upon descending
- LASIK
 - Seems to be better for extreme altitude
 - No consistent changes with altitude

Summary

- Adaptation to Altitude
 - Increase ventilation
 - Increase hematocrit
 - Changes in O₂ affinity
- Acute mountain sickness (AMS)
- High altitude pulmonary edema (HAPE)
- High altitude cerebral edema (HACE)
- High altitude retinal disease

Photo: Deb Robertson