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A B S T R A C T

This paper presents the first autoregressive with exogenous input (ARX) model using energy expenditure,
carbohydrates on board, and insulin on board as input to predict interstitial glucose (IG). The proposed model
may be used for predicting IG even during physical activity (PA). A population-based model, obtained from
a first database composed of 14 type 1 diabetes (T1D) patients, achieved a root-mean-square error (RMSE)
of 16.7 ± 15.6 mg/dL, on IG prediction (30-min ahead) at the end of a PA, on a second database (15 T1D
patients). Patient-specific ARX models, obtained on the second database, improved prediction accuracy (RMSE
= 7.8 ± 4.5 mg/dL), outperforming the results found in the literature.

1. Introduction

Type 1 Diabetes (T1D) is a disease, where the insulin-producing
cells (beta cells) are destroyed by the autoimmune system, causing a
failure on blood glucose (BG) control. BG > 300 mg/dL may lead to
fatigue, nausea, abdominal pain, excessive thirst, frequent urination
and blurred vision. Chronic hyperglycemia (BG > 180 mg/dL) may
lead to long-term complications affecting eyes, kidneys, nerves and
particularly the cardiovascular system. BG < 70 mg/dL (hypoglycemia)
may lead to seizures, coma, and death. In fact, glucose is absorbed
into the bloodstream after digestion of carbohydrates (CHO) in a meal,
i.e., meals provoke an increase in BG. Glucose is also produced by the
liver. Insulin is a hormone that allows glucose in the bloodstream to
enter into cells, providing them with the energy they need to function,
i.e., insulin provokes a decrease in BG. In this sense, the challenge
for patients with T1D is to correctly dose their insulin administration
in order to maintain their BG level into a target range, typically BG
∈ [70, 180] mg/dL.

Interstitial glucose (IG) prediction plays an important role for auto-
matically maintaining BG level of T1D patients into the targeted range.
For instance, suspending insulin delivery when predicted IG is lower
than a given threshold, allows reduction in hypoglycemic events (Garg
et al., 2012; Stenerson et al., 2014). As an other example, Model Pre-
dictive Control (MPC) algorithms use predicted IG to optimize insulin
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delivery (Del Favero et al., 2014; Hovorka et al., 2004). In fact, a
recently CE marked artificial pancreas (CE marking is a symbol of
free marketability in the European Economic Area), uses IG predic-
tions for regulating BG. For more details on this promising technology
see Benhamou et al. (2018) and Benhamou et al. (2019). The reader
shall notice, that in this paper we make the difference between IG and
BG. IG, which is provided by a continuous glucose monitoring (CGM)
system and is highly correlated to BG (Kulcu, Tamada, Reach, Potts, &
Lesho, 2003), is the measure used by the artificial pancreas to regulate
BG.

There exists a wide variety of models for predicting IG from a vari-
ety of input variables. In Daskalaki, Prountzou, Diem, and Mougiakakou
(2012), three different model types: autoregressive (AR) models, AR
models with exogenous input (ARX) and models based on an artificial
neural network (ANN), were proposed. The AR-based models proposed
in Daskalaki et al. (2012) only use IG information to perform IG predic-
tion, whereas ARX and ANN-based models proposed in Daskalaki et al.
(2012) use IG and insulin information. In Cescon and Johansson (2009),
the predictive models receive as input variables IG, meal and insulin
data. The models consist of a state-space model, an ARX model and an
ARMAX model (autoregressive moving average with exogenous input).
In Cescon, Johansson, and Renard (2013a, 2013b), two continuous-
time second-order transfer functions are used with one using IG and
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injected insulin as inputs and the other using IG and amount of CHO
of a meal. In Stähl and Johansson (2010), a hybrid model combining
physiological (insulin and meal sub-models) and black box models
(glucose–insulin interaction model and interstitial-continuous glucose
monitoring model), was proposed. In Boiroux et al. (2018) and Eren-
Oruklu, Cinar, Quinn, and Smith (2009) autoregressive integrated
moving-average (ARIMAX) models are used into an MPC algorithm.
The two ARIMAX models use IG and injected insulin as inputs to
predict IG. Prediction horizon in Eren-Oruklu et al. (2009) was 100
min. In Boiroux, Duun-Henriksen et al. (2018) prediction horizon was
set to 10 h. In Gondhalekar, Dassau, and Doyle (2016), a state-space
model, receiving insulin and IG as inputs, is used to predict IG in a
horizon of 45 min. Prediction is used by an MPC algorithm to optimize
insulin delivery.

Previous works are very interesting, but in their IG prediction
models, no physical activity (PA) information (level, type, or sensor
data) was considered as input variable. However, it is well-known that
PA has a considerable effect on BG (Riddell, Zaharieva, Yavelberg,
Cinar, & Jamnik, 2015). Authors in Reddy et al. (2018) demonstrated
that the effect of PA on BG depends on the type (aerobic or re-
sistance) and the intensity of the exercise. While aerobic physical
activities induce a decrease on BG, resistance exercises induce an
increase. Authors in Boiroux, Jorgensen, Patek and Breton et al. (2018)
use a PA tracking watch to identify the ‘‘net’’ effect of idle, mild,
moderate and intensive PA on BG. The aim of these studies was not
to physiologically model the effect of PA into BG due to the com-
plexity of this task. In fact, PA provokes an increase of blood flow
in heart, lungs and peripheral tissue and a decrease of flow of kid-
neys and splanchnic organs (Hernández-Ordoñez & Campos-Delgado,
2008; Patton, Fuchs, Hille, Scher, & Steiner, 1989). Peripheral glucose,
insulin uptake, and liver’s glucose production are increased during
PA (Hernández-Ordoñez & Campos-Delgado, 2008). Glycogen depletion
and replenishment are also affected by the intensity of PA (Hernández-
Ordoñez & Campos-Delgado, 2008). Moreover, it is well known that
insulin sensitivity is also affected during and after PA (Derouich &
Boutayeb, 2002; Schiavon et al., 2013). Two physiological models
considering most of these effects were proposed in Hernández-Ordoñez
and Campos-Delgado (2008) and Man, Breton, and Cobelli (2009).
In Hernández-Ordoñez and Campos-Delgado (2008) PA level is mea-
sured as a volume percentage of the maximum oxygen consumption
(VOMAX

2 ). Depending on the VOMAX
2 , redistribution of blood flow, pe-

riphery glucose uptake, hepatic glucose production, and periphery
insulin uptake are modulated in their model. In Man et al. (2009), PA
level is measured indirectly using the heart rate (HR). Depending on
the HR, insulin-independent glucose clearance, insulin sensitivity (up to
22 h), and glucose uptake are modulated in their model. Although these
physiological models are very interesting, validation on real patients
was never performed. The reader shall notice that, it is very difficult
to quantify the effect of PA on the physiological variables affecting the
BG behavior. In fact, this effect depends on a large variety of factors
such as body weight, age, sex, physiological condition, patient training
level, PA type and intensity (Derouich & Boutayeb, 2002; Riddell et al.,
2015).

System identification is an alternative solution already used for
considering the effect of PA in IG prediction. For instance, in Cescon
and Renard (2011), a subspace-based patient-specific model is proposed
for IG prediction on T1D patients during 30 min of exercise. The
model receives CHO, insulin, HR, and respiration rate as inputs. In
their model, PA is estimated by using HR, however, it is well known
that HR is also modulated by stress (Hildebrandt, Mehlsen, Sestoft, &
Nielsen, 1985). This fact may affect IG prediction accuracy in some
situations. In Dasanayake, Seborg, Pinsker, Doyle, and Dassau (2015),
Dasanayake et al. proposed, a state-space model, which only receives
IG and accelerometer signals as inputs. However, their model is only
accurate, on IG prediction during PA, when heart rate is higher than
30% of the heart rate reserve (HRr). In Balakrishnan, Samavedham, and

Rangaiah (2013), an hybrid model uses as inputs the meal and insulin
information, and rate of perceived exertion (to consider PA). Since PA
is considered through the patient perception, model performance may
be affected. In Turksoy, Bayrak, Quinn, Littlejohn, and Cinar (2013),
a model using insulin on board, energy expenditure (computed from
accelerometer and HR signals) and galvanic skin response as inputs
was proposed. The model, consisting of an ARMAX model, does not
receive meal information as input. Therefore, IG prediction accuracy
after meals may decrease.

In this paper, we propose an ARX model that uses energy expendi-
ture (EE), insulin on board (IOB), and carbohydrates on board (COB),
as inputs for predicting IG. EE, computed from both accelerometers
and HR signals (Romero-Ugalde et al., 2017), is used to better consider
the effect of PA on IG prediction, as demonstrated in Turksoy et al.
(2013) and Turksoy et al. (2018). IOB is computed from the output
of an insulin pump. COB is computed from the CHO declared by the
patients. Differently to the ARMAX model used in Turksoy et al. (2013),
the ARX model proposed in our paper includes the COB as input. This
fact, allows to consider the effect of CHO, usually ingested before and
during PA to prevent hypoglycemia, in order to improve prediction.
Another difference between the ARMAX model presented in Turksoy
et al. (2013) and our ARX model is the intended use. While the ARMAX
model proposed in Turksoy et al. (2013) was designed to be used
in an artificial pancreas that does not require meal announcement,
the ARX model proposed in our paper is designed to be used in a
hybrid closed-loop artificial pancreas. We could discuss the advantages
and disadvantages of both approaches (meal announcement vs unan-
nounced meal), but this is not the aim of this paper. The aim of this
paper is to improve IG prediction during and after physical activities.

In this sense, originality of the proposed ARX model is the fact of
using EE, IOB, and COB as inputs variables. We consider that the use
of these three variables, usually modulated during (EE, IOB, COB) and
after (IOB, COB) a PA, may improve IG predictions.

The rest of the paper is organized as follows: Section 2 presents a
detailed description of the experimental protocols to acquire the two
databases used in this paper. Section 3 describes the proposed ARX
model, and the validation tests. Results, presented in Section 4, are
discussed in Section 5. Finally, Section 6 presents the conclusions of
the study.

2. Database description

Two different databases were used in this paper to estimate and
validate the proposed ARX model. The first database was acquired from
a clinical protocol where patients performed a single PA, namely ‘‘SPA
protocol’’. The second database was acquired from a clinical protocol
where patients performed four PAs, namely, ‘‘FPA protocol’’. These
protocols were approved by the ‘‘French Ethics Committee’’ and the
‘‘French National Agency for Medicines and Health Products Safety
(ANSM)’’.

2.1. SPA database description

T1D patients (N = 35, age > 18 years old, HbA1c < 10%) already
treated by insulin pump, were included in the clinical protocol, which
was performed on 7 centers in France, in 2012.

After two visits, inclusion analysis and installation/calibration of
two continuous glucose monitoring systems (Dexcom® SEVEN® PLUS),
patients were hospitalized during 25 h. Fig. 1 illustrates the SPA
experimental procedure.

Patients arrived at 18:30 in the afternoon. An intravenous catheter,
an insulin pump (JewelPUMPTM), an accelerometer (hip-worn GT3X+,
ActiGraph), and a PA monitoring system (Actiheart, CamNtech) were
placed. Meals were taken at fixed hours (20:00, 8:00 and 12:00). Pa-
tients performed a PA at 15:00 during 30 min. The required PA, which
consists of a step test, was performed at moderate intensity according
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Fig. 1. SPA study procedure was performed on visit 3. Subjects arrived at 18:30 and
took dinner at 20:00 of day 1 of visit 3. On day 2 of visit 3, patients took breakfast
and meal at 8:00 and 12:00, respectively, and performed a PA at 15:00 during 30 min.

to each patient. From the 35 initial patients, fourteen patients wearing
the accelerometer and the HR monitoring system were included on this
study. According to the proposed PA protocol, patients reduced basal
insulin rate during the half hour of PA + 2 h. Moreover, when patient
risked hypoglycemia (based on current and previous CGM measures),
snacks were ingested and declared by patient.

Fig. 2 shows, for one patient of the SPA database, data set acquired
during the second day of visit 3 of this experimentation. We can
observe that (1) HR and counts per minutes (CPM), increase during PA
(PA started at 15:00), (2) for this patient, HR and CPM also increase
between 10:00 and 11:00, which indicates that this patient performed
an undeclared PA, (3) meal have an important and delayed effect on
IG (IG increases around 40 min after meal), (4) as already mentioned,
insulin basal rate is reduced when the patient started the PA in order to
prevent hypoglycemia. More precisely, the aim of Fig. 2 is to illustrate
data set used in this work to estimate (order selection and parameter
estimation) the ARX model, i.e., data set ∈ [𝑡PA − 360, 𝑡PA + 120] min,
where 𝑡PA is the time at which PA was started. This time interval was
used on all the patients of the SPA database.

2.2. FPA database description

T1D patients (N = 36, age > 18 years old, 7.5% < HbA1c < 9.5%),
already treated by insulin pump, and able to practice at least one
PA during 3 days, were included in the clinical protocol, which was
performed in 9 centers in France, in 2016.

This study was performed in 3 visits (see Fig. 3). During the first
visit, inclusion was performed, CGM system (DexcomTM Share AP,
Dexcom Inc., San Diego, CA) was installed and calibrated, patients were
instructed on the CGM system utilization, patients were randomized on
2 groups, and dates for visits 2 and 3 were established.

Visit 2 was done two days before the main visit (V3). An accelerom-
eter (hip-worn GT3X+, ActiGraph), and a PA monitoring system (Acti-
heart, CamNtech) were placed.

Concerning the visit 3 (see Fig. 3), patients arrived to the research
center at 8:00 (after taking breakfast at home), and spent 72 h in the
research center. If patients were in group A, they used a closed-loop
Diabeloop artificial pancreas, i.e., the CGM DexcomTM Share AP, the
smartphone Samsung (integrating the Diabeloop AP algorithm), and
the insulin pump Cellnovo. If patients were in group B, they used open
loop, i.e., the CGM DexcomTM Share AP and, their own insulin pump
and usual treatment. Acquisition systems were started at 10:00.

During visit 3, patients performed daily physical activities, but also
some imposed physical activities. Meals, of various CHO quantities,
were taken at the same hours during the three days. Imposed physical
activities were performed at fixed hours. Intensity and duration of
physical activities were not the same during the three days of the visit.
When PA started 3 h after meal, each patient reduced the insulin basal
rate at 50 or 80% of the current basal rate, depending on the PA

intensity, 30 to 60 min before starting the PA. When PA started within
the 3 h after meal, bolus correcting meal was reduced. When required
(hypoglycemia risk), snacks were ingested and declared by the patient.
From the 36 initial patients, fifteen patients wearing the accelerometer
and the heart rate monitoring system were included on this study.

Fig. 4 displays, for one patient of the FPA database, data set ac-
quired during the 3 days of visit 3. We can observe that patients
performed a PA during day 1 (PA1), a PA during day 2 (PA2), and
two PAs during day 3 (PA3 and PA4). We can also observe that when
patient risked hypoglycemia, snacks were ingested (see small increases
in CHO, in the third CHO panel).

In both protocols (SPA and FPA), CGM calibration was performed
(1) at the installation phase by two BG measurements, (2) when in-
structed by the 12-hour CGM calibration prompt, and (3) when the
CGM reading was inaccurate. In SPA protocol and the main visit of FPA
protocol, BG was measured, by a glucose meter, at least every hour, but
also every 15 min during meals, PA, hypoglycemia, and hyperglycemia.

In both protocols (SPA and FPA), IG was acquired every 5 min,
declared PA, declared CHO, insulin basal rate, bolus, and HR (com-
puted from electrocardiogram) were sampled every min. Accelerometer
signals were converted in counts per minute. Finally all the signals were
preprocessed and re-sampled to a sampling period of 10 min, which is
the sampling period used in the proposed ARX model.

The 14 patients of the SPA protocol and the 15 patients of the
FPA protocol, used in this study (good quality of CGM, CPM, and HR
signals), were different. In fact, SPA and FPA protocols were performed
on different years (2012 and 2016).

In both studies (SPA and FPA), CHO and PA type, were declared by
the patients.

3. The proposed ARX model

This section presents the ARX model proposed in this paper. Dif-
ferently to the black box models found in the literature (for instances
Cescon & Renard, 2011; Dasanayake et al., 2015; Turksoy et al., 2013,
2018), the proposed ARX model uses EE, IOB, and COB as inputs to
improve IG prediction. These inputs allow to consider (1) the intensity
and duration of a PA, (2) the delivered insulin which is modulated
(before and during PA) to reduce the risk of hypoglycemia, and (3) the
CHO, usually ingested before and during PA to prevent hypoglycemia.
Notice that these are important factors affecting BG dynamic.

3.1. ARX structure

In system identification, ARX models are among the most used
black box structures due to their simplicity (Farzin Piltan, Sulaiman, &
Wouters, 2017; Soltanieh & Ogun, 2018). The ARX model is given by
(1).

𝑦[𝑘] = 𝐚𝑇 𝐲𝑘−1 + 𝐛𝑇 𝐮𝑘−𝑛𝑘 + 𝑒[𝑘] (1)

where 𝑘 is the current sample. Both 𝐚 = [𝑎1,… , 𝑎𝑛𝑎] and 𝐛 = [𝑏1,… , 𝑏𝑛𝑏]
are the model parameters. The regressors 𝐲𝑘−1 = [𝑦[𝑘 − 1],… , 𝑦[𝑘 − 𝑛𝑎]]
are the previous outputs on which the current output (𝑦[𝑘]) depends.
The regressors 𝐮𝑘−𝑛𝑘 = [𝑢[𝑘 − 𝑛𝑘],… , 𝑢[𝑘 − 𝑛𝑘 − 𝑛𝑏 + 1]] are the delayed
inputs on which the current output depends. The parameters 𝑛𝑎 and
𝑛𝑏 are the orders of the ARX model, 𝑛𝑘 is the time delay (expressed in
samples) before the input affects the output, also called the dead time
of the system. Finally, 𝑒[𝑘] is a noisy value.

3.2. Proposed ARX model structure

ARX models may be used for representing multiple-input and single-
output (MISO) systems. In this paper, the proposed ARX model, given
by (2), receives as inputs the IOB computed according to (3), the COB
computed according to (4), and the EE computed according to (6).
The black box model in (2) will determine the temporal relations that
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Fig. 2. Data set (of a SPA database patient) used in this work for modeling (from 5:00 in the morning to 17:00 in the afternoon). Breakfast, and meal were taken at 8:00, and
12:00, respectively. Patients performed a PA at 15:00 during 30 min.

Fig. 3. FPA study procedure was performed on 3 visits. During the main visit patients
arrived at 8:00 and stayed in the research center during 3 days, and performed 4
physical activities (PA1, PA2, PA3, and PA4).

may exist between the inputs IOB, COB, EE and the output IG. Model
parameters are estimated from MISO data in order to dynamically
represent the effect of inputs into IG.

�̂�IG[𝑘] = 𝐚𝑇 𝐲IG𝑘−1 + 𝐛𝑇 𝐮EE𝑘−𝑛𝑘1 + 𝐜𝑇 𝐮IOB𝑘−𝑛𝑘2
+ 𝐝𝑇 𝐮COB𝑘−𝑛𝑘3

(2)

The ARX model, proposed in this paper, used a sampling period of 10
min, according to previous works found in the literature (Cescon &
Johansson, 2009; Turksoy et al., 2013). However, predictions may be
performed every 5 min (sampling period of IG), i.e., every 5 min the
ARX model resamples the past signals to 10 min in order to predict IG
[10, 20, 30,… , 𝑁] min ahead. In this paper we present examples of 30,
60 and 120 min ahead IG predictions.

3.3. Model inputs

3.3.1. IOB input
The IOB refers to the injected insulin (bolus and basal), that is still

to have an effect on the BG. The IOB is computed as a convolution:

𝑢IOB[𝑛] =
𝐾
∑

𝑘=0
𝐼[𝑛 − 𝑘]ℎIOB[𝑘] (3)

where 𝐼[𝑘] is the quantity of insulin in mU delivered by the insulin
pump at the 𝑘th time index.

3.3.2. COB input
In the same spirit, the COB refers to the portion of the meal that

is still to have an effect on the IG. The COB is computed as a similar
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Fig. 4. Data set (of a FPA database patient) used in this work for modeling (estimation and/or validation). Initialization was performed at 10:00. Breakfast, meal and dinner were
taken at 8:00, 12:00, and 19:00, respectively. Patients performed a PA at 17:00 during 30 min or 45 min. Patients also performed a PA at 12:00 of day 3.

convolution:

𝑢COB[𝑛] =
𝐾
∑

𝑘=0
𝐶𝐻𝑂[𝑛 − 𝑘]ℎCOB[𝑘] (4)

where 𝐶𝐻𝑂[𝑘] is the quantity of CHO in g ingested at the 𝑘th time
index. As already mentioned, CHO were declared by the patients.

In (3) and (4), 𝐾 = 144 to consider 24 h of data, and ℎ[𝑘] = ℎ[𝑘𝜏𝑠]
with 𝜏𝑠 = 10 min, is given by (5):

ℎ[𝑘] =
[

1 + 𝑘
𝜏

]

𝑒−
𝑘
𝜏 . (5)

𝜏 = 50 min in (3) was set from a population-based study (SPA
protocol), where insulinemia was measured every 10 min during a
given period. 𝜏 = 40 min in (4) was empirically set. We considered
the fact that CHO have usually a faster effect on IG than insulin.

3.3.3. EE input
The EE is computed from accelerometer and HR signals, according

to (6).

𝑢EE =

⎧

⎪

⎨

⎪

⎩

𝛼1HRr + 𝛽1, if HRr ≥ 𝑆HRr ,
𝛼2LC + 𝛽2 , if HRr < 𝑆HRr and LC < 𝑆LC,
𝛼3LC + 𝛽3 , if HRr < 𝑆HRr and LC ≥ 𝑆LC.

(6)

where 𝛼1 = 5.45, 𝛽1 = −66.09, 𝛼2 = 256.09, 𝛽2 = −0.13, 𝛼3 = 85.99,
𝛽3 = 82.39 are the model parameters. 𝑆HRr = 40 bpm and 𝑆LC = 0.5 are
the cut points obtained from a population-based approach. LC is a linear
combination of the normalized values of HRr and CPM, computed as:

LC = 𝜃1CPM + 𝜃2HRr .

where HRr = HR − resting HR, CPM are the counts per minute (a
quantity derived from the accelerometer signal Sandroff, Riskin, Agiovl-
asitis, & Motl, 2014).
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Notice that, in this model, PA information declared by the pa-
tients is not used to compute EE. For more details on model (6)
see Romero-Ugalde et al. (2017).

3.4. Model orders and delays

The orders (𝑛𝑎, 𝑛𝑏, 𝑛𝑐, and 𝑛𝑑) and delays (𝑛𝑘1, 𝑛𝑘2, and 𝑛𝑘3) of the
ARX model proposed in this paper, were obtained by a standard system
identification methodology, described in the following.

(1) 𝑛𝑎, 𝑛𝑏, 𝑛𝑐, 𝑛𝑑, 𝑛𝑘1, 𝑛𝑘2, and 𝑛𝑘3 are changed among a given range
of values,

(2) each time that 𝑛𝑎, 𝑛𝑏, 𝑛𝑐, 𝑛𝑑, 𝑛𝑘1, 𝑛𝑘2, or 𝑛𝑘3 changes, model
parameters are estimated, by the classical least squares algorithm
(7), and an associated Akaike final prediction error (𝐹𝑃𝐸) is
computed by (8).

�̂� = (𝐗𝑇𝐗)−1𝐗𝑇 𝐲, (7)

where 𝐗 is the regression matrix, 𝐲 is a 𝑁 × 1 vector of outputs
(IG in this case), and �̂� represents the estimated parameters.

𝐹𝑃𝐸 =
1 + 𝑑∕𝑁
1 − 𝑑∕𝑁

( 1
𝑁

𝐞(𝑘, �̂�)(𝐞(𝑘, �̂�))𝑇 ), (8)

where 𝑁 is the number of values in the estimation data set, 𝐞(𝑡, �̂�)
is a vector of prediction errors, and 𝑑 is the number of estimated
parameters (�̂�).

(3) the model structure (orders and delays) leading the lowest final
prediction error is chosen as the best candidate. Notice that
by using this selection criteria (8) the overparametrization is
penalized.

Database used for choosing the model structure (orders and delays)
was the SPA database. Datasets into the span [𝑡PA − 360 min, 𝑡PA +
120 min] sampled at 𝜏 = 10 min, were used for training.

Accordingly with the system identification procedure described
above: (1) model orders and delays were changed in the ranges:
𝑛𝑎 ∈ [1, 10], 𝑛𝑏 ∈ [7, 8], 𝑛𝑐 ∈ [10, 15], 𝑛𝑑 ∈ [10, 15], 𝑛𝑘1 ∈ [1, 2],
𝑛𝑘2 ∈ [1, 2], 𝑛𝑘3 ∈ [1, 3]; (2) each time that a given set of orders
and delays was set: (a) a regression matrix was constructed for each
patient, (b) the regression matrix of all patients was concatenated, (c) a
model (parameters) was estimated, by the least squares algorithm, and
(d) a final prediction error associated with such model is computed;
(3) finally, the model structure (orders and delays 𝑛𝑎 = 3, 𝑛𝑏 = 5,
𝑛𝑐 = 11, 𝑛𝑑 = 7, and 𝑛𝑘1 = 𝑛𝑘2 = 𝑛𝑘3 = 2), yielding the lowest final
prediction error was chosen as the best candidate. It is interesting to
notice that the selected model structure allows to consider the effect of
IOB in the interval [t −130 min, t −20 min], and the effect of COB
in the interval [t −90 min, t −20 min]. These time intervals cover
the periods where insulin (Hinshaw et al., 2013) and CHO (American
Diabetes Association, 2001) have the most important effect on BG.

3.5. ARX validation tests

The goals of the validation tests presented in this paper are (1) to
evaluate the possibility of proposing a population-based ARX model,
(2) to verify the hypothesis on ARX models stating that performance
of personalized ARX models may increase as the number of quality-
training-data increases, and (3) to test the improvement achieved by
using the three regressors.

3.5.1. Test 1: The population-based ARX model obtained from the SPA
database is evaluated on the FPA database

As a first approach, we evaluated the possibility of using an ARX
model for predicting IG in any T1D adult patient. In this sense, ARX
parameters (𝐚,𝐛, 𝐜, and 𝐝 in (2)) are obtained from data sets on which
model orders and delays were chosen. Similar to the model structure
selection, the concatenated regression matrix was used to obtain the

SPA population-based ARX parameters. Then, the population-based
(PB) model was used for predicting IG on the 15 patients of the FPA
database, during 30, 60 and 120 min, after the physical activity (PA3)
was started (see Fig. 4).

3.5.2. Test 2: Increasing ARX performance by increasing training data
We hypothesize, according to literature (Herpe et al., 2006), that

black box models performance may increase, if the number of quality-
available-training data increases. In this sense, patient-specific ARX
models were obtained on the FPA database from:

(a) a single data set (T1), i.e., data around PA1, PA2, or PA4 is used
separately for training;

(b) on two data sets (T2), i.e., data around PA1 and PA2, PA1 and
PA4, or PA2 and PA4 is used for training;

(c) on three data sets (T3), i.e., data around PA1, PA2, and PA4 is
used for training.

We refer to data around a given PA, as a set of 8 h of data into the
span [𝑡PAi − 60, 𝑡PAi + 360 min], where 𝑡PAi is the time at which one of
the physical activities PA1, PA2 or PA4 was started. In this sense models
T1 are trained on 8 h of data, T2 models are trained on 16 h of data,
and T3 models are trained on 24 h of data.

Finally, T1, T2, and T3 ARX models were used for predicting IG,
into the span [𝑡PA3, 𝑡PA3 +30 min], [𝑡PA3, 𝑡PA3 +60 min], and [𝑡PA3, 𝑡PA3 +
120 min].

3.5.3. Test 3: Improvement achieved by the use of the three variables
(insulin, meal, and EE)

On the FPA database, we obtained (1) T3 models using COB, IOB,
and EE as inputs, (2) T3 models using only COB and IOB as inputs
(NEE), (3) T3 models using only EE and IOB as inputs (NCOB), and (4)
T3 models using only EE and COB as inputs (NIOB). Models T3, NEE,
NCOB, and NIOB, are compared in order to show the improvement
reached by the use of three simultaneous variables as inputs of the ARX
models.

3.6. Performance indicator

Performance indicator used for measuring model accuracy is the
root-mean-square error (RMSE), given by:

RMSE =

√

√

√

√
1
𝑁

𝑁
∑

𝑛=1

(

𝑦IG[𝑛] − 𝑦IG[𝑛]
)2 , (9)

which is a standard indicator used in IG prediction (Cescon & Johans-
son, 2009; Cescon et al., 2013a, 2013b; Daskalaki et al., 2012; Stähl
& Johansson, 2010). In (9), 𝑦IG[𝑛] and 𝑦IG[𝑛], are the measured and
predicted IG at instant 𝑛, respectively. Since in tests described above the
ARX models are used for predicting IG during 30, 60, and 120 min, and
the sampling period was 10 min, then 𝑁 = 3, 6, and 12, respectively.

P-value, computed by Wilcoxon Matched-Pairs signed-rank test
(MacFarland & Yates, 2016), which is a non-parametric statistical
hypothesis test, was used for validation on test 3, described above.

4. Results

Parameters of the proposed PB ARX model were 𝑎1 = 1.67, 𝑎2 =
−0.74, 𝑎3 = 0.06, 𝑏1 = −1.03, 𝑏2 = 1.87, 𝑏3 = −0.71, 𝑏4 = 1.35,
𝑏5 = −0.12, 𝑐1 = 3.39𝑒−4, 𝑐2 = −1.09𝑒−4, 𝑐3 = −0.34𝑒−4, 𝑐4 = −3.02𝑒−4,
𝑐5 = 3.82𝑒−4, 𝑐6 = −3.73𝑒−4, 𝑐7 = −1.19𝑒−4, 𝑐8 = 2.63𝑒−4, 𝑐9 = −1.26𝑒−4,
𝑐10 = 3.37𝑒−4, 𝑐11 = −1.74𝑒−4, 𝑑1 = 0.57𝑒−2, 𝑑2 = −0.73𝑒−2, 𝑑3 =
0.45𝑒−2, 𝑑4 = −0.08𝑒−2, 𝑑5 = −0.59𝑒−2, 𝑑6 = 0.98𝑒−2, and 𝑑7 = −0.54𝑒−2.

Fig. 5 displays the parameters of the 15 patient-specific ARX models
(boxplots) obtained for T3 models. On the same figure, parameters
of the population-based ARX model (PB-model) are also represented
(single blue points).
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Fig. 5. Parameters of the personalized ARX models derived from T3 models. Since parameters were personalized for 15 patients, each box is composed of 15 points, i.e., each
parameter can take 15 values. Parameters of the PB model are also displayed (blue points), representing the value of each parameter.

Table 1
RMSE (mean ± standard deviation) computed for IG prediction during 30, 60 and 120
min, performed by models T3, T2, T1, and PB.

Model 30 min (mg/dL) 60 min (mg/dL) 120 min (mg/dL)

T3 7.75 ± 4.51 15.86 ± 9.61 35.24 ± 19.52
T2 8.94 ± 6.17 19.11 ± 12.24 41.22 ± 28.01
T1 21.82 ± 17.02 81.78 ± 120.61 327.04 ± 473.29
PB 16.70 ± 15.56 31.67 ± 25.84 44.50 ± 30.45

We observe in Fig. 5 that all the parameters of the PB model are
inside the boxplots, i.e., min and max values of each parameter of
the T3 models. Moreover, the parameters 𝑎3,𝐛, 𝐜, and 𝐝 are inside
the interquartile range, i.e., first and third quartiles. We see that the
coefficients 𝑎1, 𝑎2 are roughly opposite, which means that, as expected,
the prediction is sensitive to the current IG slope. Since the proposed
ARX model is a black box model, more explanation on the meaning of
the rest of parameters may not be given.

Fig. 6 (left) shows results of tests 1 and 2. Performance reached
by the ARX models obtained from different training data sets are
represented by boxplots T3, T2, and T1, respectively. Performance of
the SPA population-based ARX model is represented by boxplot PB.
Table 1 presents (mean ± standard deviation) RMSE on IG prediction
during 30, 60 and 120 min, performed by each model.

Fig. 6 (right) displays results of test 3, i.e., RMSE reached by models
T3, NEE, NCOB, and NIOB. Table 2 displays p-values (obtained by
Wilcoxon Matched-Pairs signed-rank test) of the comparison between
the T3 models and the NEE, NCOB, and NIOB models, on IG prediction
during 30, 60, and 120 min.

Finally, Fig. 7 illustrates a representative example of 30 min ahead
IG prediction, performed by the proposed T3 model (considering EE,
IOB, and COB as inputs), on one patient of the FPA database. As already
mentioned, even if the ARX model uses a sampling period of 10 min, IG
prediction may be performed every 5min, as is the case in this example.

Table 2
P-values, by Wilcoxon Matched-Pairs signed-rank test, from comparisons between RMSE
reached by the model T3 and the models NEE, NCOB, and NIOB, on IG prediction
during 30, 60 and 120 min.

Model 30 min 60 min 120 min

NEE 0.03 0.04 0.28
NCOB 0.35 0.30 0.04
NIOB 0.52 0.21 0.08

5. Discussion

Fig. 5 shows that parameters of the population-based ARX model,
obtained from the SPA database, are within the ranges of parameters
of the patient-specific ARX models obtained from the FPA database.
Therefore, performance reached by the PB model is good (compared
with the obtained patient-specific models) for IG predictions (during
30, 60, and 120 min) on the FPA database. In fact, in Dasanayake
et al. (2015), authors reported an average mean absolute error (MAE),
over 15 patients, during 30 min of IG predictions (during PA) of 19.7
mg/dL. The PB model proposed in this paper reached an average MAE
of 14.93 mg/dL, over 15 patients, during 30 min of IG prediction.
Considering these results we can conclude that the proposed PB model
is more accurate than the model presented in Dasanayake et al. (2015)
on 30-min IG predictions. But the two models were not developed
under the same conditions and for the same goal: (1) the model that
we propose in this paper allows IG prediction during and out of PA
periods, whereas the model proposed in Dasanayake et al. (2015) is
only accurate on PA periods; (2) the model proposed in this paper
uses EE (from HR and accelerometer signals), IOB, and COB (from
CHO declared by the patient) as exogenous inputs, whereas the model
proposed in Dasanayake et al. (2015) only uses accelerometer signals;
(3) experiments in Dasanayake et al. (2015) were different of those
performed in this paper. In fact, this is the first time that SPA and FPA
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Fig. 6. (left) Performance on IG prediction by ARX models trained on 1, 2, and 3 data sets, i.e., T1, T2, and T3, respectively. Model trained on the SPA population is also included
(PB). Models are used for predicting IG during 30 min (top panel), 60 min (middle panel), and 120 min (bottom panel). (right) Performance on IG prediction by ARX models,
trained on 3 data sets. Models T3 uses EE, COB and IOB as inputs. Models NEE uses COB and IOB. Models NCOB uses EE and IOB as inputs. Models NIOB uses EE and COB as
inputs. The four models are used for predicting IG during 30 min (top panel), 60 min (middle panel), and 120 min (bottom panel).

Fig. 7. IG prediction 30 min ahead, by a patient-specific ARX model using as inputs EE, COB, and IOB (i.e. a T3 model). Every 5 min, the ARX model uses re-sampled signals
(10 min) to predict IG 30 min ahead.

protocols are reported in a paper. For these reasons, a true comparison
may not be established.

Fig. 6 (left) allows us to demonstrate that performance of patient-
specific ARX models increases if the number of training data increases.

We can observe that, for T3 models trained on 24 h of data, the RMSE
on IG prediction during 30, 60 and 120 min is lower than RMSE
obtained by models T2 and T1, i.e., models trained on 16 and 8 h of
data, respectively. Table 1 confirms these results quantitatively. Mean
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RMSE reached by T3 models is three times lower than the one obtained
by models T1 on IG prediction during 30 min, five times lower on IG
prediction 60 min ahead and nine times lower on IG predictions 120
min ahead. Comparing T3 and T2 models, difference in performance is
less important than that observed while comparing T3 and T1 models,
but T3 models remain more accurate.

Fig. 6 (right) shows that models using EE, COB and IOB as inputs are
more accurate than those models using only IOB and COB, on 30 and 60
min ahead IG predictions. A 𝑝-value lower than 0.05 was found, when
evaluating the difference between T3 and NEE models. However, a 𝑝-
value = 0.28 was found on IG prediction during 120 min. These results
may be interpreted as follows. When a T1D patient performs a PA, the
use of EE as input in the models is very important (during PA and even
30 min after PA). However, when the effect of the performed PA is
reduced (120 min after PA), the use of EE as input is less important, but,
as showed in Fig. 6 (right), still allows improvement in performance.
Concerning the effect of suppressing the COB input or the IOB input
of the models, T3 models reached better performance than NCOB and
NIOB models on the three prediction horizons, but difference was not
significative.

Finally, Fig. 7 shows an example on 30 min ahead IG prediction, by
the T3 model during a day (day 3 of visit 3 of the FPA protocol shown in
Fig. 3). We can observe that the proposed model is good for predicting
IG during PA but also out of PA. Therefore we consider that this model
may be used on any application where 30 min ahead IG prediction is
required, regardless of whether or not, the patients is performing a PA.

In fact, other works have reported results on 30 min ahead IG
prediction by linear black box models. In Daskalaki et al. (2012) an
AR model, using only IG information as input, reached a RMSE ranged
between 14.0 and 21.6 mg/dL, whereas an ARX model, using IG and
insulin information as inputs, reached a RMSE ranged between 13.3
and 18.8 mg/dL. These results are promising, however, estimation
and validation were done on a virtual population, and the model was
not confronted to the complex dynamics of IG on real T1D patients.
In Cescon and Johansson (2009), a state-space model, receiving meal
and insulin data as input variables, reached a RMSE = 18.08 mg/dL
on IG prediction 30 min ahead, on a real T1D patient. In Stähl and
Johansson (2010) a model combining physiological and black box
models, reached RMSE of 19.1, 19.5, and 21.1 mg/dL on IG predic-
tion during 20, 40, and 60 min, respectively. The reader shall notice
that similar to our model, in these works insulin and IG information
is automatically acquired by an insulin pump and a CGM system,
respectively. CHO information is manually reported by the patients.
However, experiments performed in these works (PA is not considered)
are different to those performed in our study. Therefore, a comparison
between results reported by the other works and ours may not be fair.
But, RMSE reached by our models, using EE, COB, and IOB as inputs,
trained on 24 h of data (i.e., T3 models), on IG prediction during 30 and
60 min (RMSE = 7.75 ± 4.51 and RMSE = 15.86 ± 9.61, respectively),
on 15 T1D patients, show the interest of this paper.

5.1. Limitations

The main limitation of the study is that models were performed
and validated on two databases composed of adult patients. Then,
we cannot assure that proposed models will accurately predict IG on
children or adolescent patients. Other limitation of the proposed model
is the inability to accommodate for disturbances that may occurs in the
prediction horizon. In fact, predictions are based on past and current
data, then future meals and physical activities will not be considered on
the IG prediction. Other limitation is the fact of using IOB and COB time
constants at fixed values (one population-based and the other empiri-
cally chosen). In fact, these time constants, which are patient dependent
variables, may affect IG prediction performed by the proposed models.
Another, limitation of the proposed model is that insulin sensitivity,
which is also a patient dependent variable that varies during the day,

is not considered by the model. This limitation may be overcome by
adapting the model parameters during the day (Daskalaki et al., 2012).
Finally, a limitation concerns the heart rate and accelerometer sensors
errors. For instance, in Fig. 4 (bottom panel) some sensors errors (HR <
50 bpm) are displayed. Although sensors signals were processed on this
work, online signal processing may not lead to the same results. This
limitation will be overcome with the advance of sensor technologies
(measurements and connectivity).

6. Conclusion

This paper presented ARX models for predicting IG during and
after PA. We showed that a population-based ARX model may be
used for predicting IG 30 min ahead with an acceptable accuracy. We
demonstrated that performance of the ARX models increases when the
number of training data increases. This result is very interesting, since
on T1D patients using an artificial pancreas, the number of quality
training data will increase through time. However, patients’ physiology
also evolves though time, then training data should be correctly chosen.
In fact, data collected a long time ago may not be representative of
the patient’s BG dynamics. Finally, we showed the interest of using
meal, insulin, and physical activity information as inputs to increases
performance on IG prediction during and after PA. In fact, current
models found in the literature are limited to predicting IG during PA
(insulin or meal are not used as inputs), or out of a PA (EE is not used
as input). The fact of considering the 3 variables as inputs, allows the
proposed model to perform accurate IG predictions during and out of
PA.
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