

EEG-Based Typing Interface with Language Model for Individuals Who are Functionally Locked-in

B. S. Oken, U. Orhan, B. Roark, D. Erdogmus, A. Fowler, B. Peters, M. Miller, M.B. Fried-Oken

Neurology, Biomedical Engineering, Center for Spoken language Understanding and Institute on Development and Disabilities Oregon Health & Science University, Portland, OR

Dept of Electrical and Computer Engineering, Northeastern University

Disclosure/Acknowledgements: Supported by grants NIH R01 DC009834, NSF IIS-0914808, NSF CNS-1136027, and NSF IIS-1149570.

Brain-Computer Interface (BCI)

- Technology whereby a computer detects a 'selection' made by a person who does not rely on neuromuscular activity.
- The technology uses the person's changes in brain activity as the intended execution.
- Technology substitutes for the loss of typical neuromuscular outputs so that people can interact with their environments through brain signals rather than through muscle movement.

Locked In Syndrome: American Congress of Rehab Med (1995)

- A syndrome characterized by preserved awareness, relatively intact cognitive functions, and ability to communicate while being paralyzed and voiceless. This syndrome is defined by five criteria:
 - 1. Sustained eye opening and preserved vertical eye movement
 - 2. Preserved higher cortical functions
 - 3. Aphonia or severe hypophonia
 - 4. Quadriplegia or quadriparesis
 - 5. Primary mode of communication involving vertical eye movements or blinking

Classifications of LIS

- Complete or Total LIS: Quadriplegia and anarthria. No eye movement
- Classic LIS: Preserved vertical eye movement and blinking
- Incomplete LIS: Some voluntary movements in addition to eye movements (Bauer et al, 1979)

Epidemiology of LIS

- Over 2 million people in the U.S. with some level of functional LIS
- Less than 1% of CVA
- More than 85% of individuals are still alive after 10 years
- Average age range: 17 52 years
- Younger patients have better potential of survival

Options for restoring functional motor function

- Rely on capabilities of remaining pathways
 - Eye gaze communication system
 - Head mouse access to computer
- Detouring around neural pathway breaks
 - FES: Direct activation of paralyzed muscles through neural or EMG activity above lesion level.
- Provide the brain with a new, non-muscular communication and control channel: BCI.
 Either non-invasive scalp EEG or direct cortical EEG

BCI 2000 w/ P300 speller

- Most commonly used spelling interface
- Uses a grid with randomly flashing rows/columns

3 passes

 of same
 response
 = selection

SEN	D						_
	А	В	С	D	Е	F	
	G	Н	I	J	Κ	L	
	Μ	Ν	0	Ρ	Q	R	
	S	Т	U	V	W	Х	
	Y	Ζ	1	2	3	4	
	5	6	7	8	9	_	

Berlin BCI: Hex-o-spell

RSVP Keyboard[™]: A Spelling Interface based on the P3 Signal

- A sample 1-sequence training epoch...
- Multiple sequences of same letters shuffled => multi-trial ERP detection

400ms

- Rapid
- Serial
- Visual

Epoch #1 Press any key

• Presentation

1000ms

Cognitive Systems Laboratory, & Northeastern University

RSVP Keyboard[™] BCI Overall Goal

To integrate new engineering developments in EEG analysis with language models for people who are locked-in to communicate and control their environments.

Unique Aspects of OHSU BCI Research

1. RSVP: stimulus presentation 2. Language modeling 3. Single event ERP goal 4. Incomplete locked-in patients 5. Participatory Action Research 6. User-Centered Design 7. Community Based

What is a language model?

 Builds statistical models to predict symbols given previously typed symbols
 – Given San Diego Pa

- The language system predicts *Padres*

RSVP Keyboard[™] Fuses Language Model & EEG Evidence

RSVP Keyboard makes letter selections based on *joint evidence* from an n-gram language model and EEG signals.

Calibration Task

Gathering Data to Train Classifier (about 12 minutes)

- Subject instructed to look for a specific letter
- 75 or 50 series containing 10 letters or symbols, including the target letter
- Machine Learning: Learning Algorithm + EEG

Current use of the RSVP Keyboard [™] : The Mastery Copy Task

- To give practice opportunity to improve performance with the RSVP Keyboard[™]
- To allow participants to experience success before free spelling
- To incorporate the concept of errorless learning into the RSVP[™] paradigm

Mastery Copy Task: Design

- Participants are presented with a pre-selected set of phrases, one at a time
- Task is to copy a target word from each phrase
- 5 levels of difficulty
 - Earlier levels provide more support from the language model, so participant can spell successfully even if brain signals are not optimal
- Participant must complete 2 out of 3 phrases at each level
- 3 sets of 3 phrases at each level so participant can re-attempt levels if necessary

Mastery Examples

Level 1	i do not agree
Level 2	i have said too much
Level 3	the third seat from the left
Level 4	a long time span
Level 5	the man with wavy eyebrows

The probability of letters in the *target word* range from 5 times more likely as the next most likely letter (level 1) to 0.3 times as likely as the most likely letter (level 5).

Mastery Copy Task: Stopping Criteria

- RSVP Keyboard[™] will move on to next phrase when one of the following criteria is met:
 - Target word is spelled correctly
 - Participant has spent 10 minutes attempting to type target word
 - Number of sequences exceeds 2LS, where
 L = # of letters in word and S = maximum # of
 sequences shown before a letter is chosen

Instructions

- First there will be a fixation cross.
- Then a sentence will appear in the upper left .
- The word you are to try to spell is in green.
- If the computer chooses a wrong letter, please try to fix it using a backspace.

Participants

	LIS	CONTROLS	<u>p value</u>
Age, mean (range)	45.8 (27-65)	45.2 (17-66)	0.965 ^a
Gender (M/F)	7/2	4/5	0.147^{b}
Ethnicity (%Caucasian)	77.8	100	0.134 ^b
Years of education (range)	14.6 (12-23)	18.2 (11-22)	0.067^{a}
First language English (n)	8	9	0.303 ^b
Level of familiarity with	4/5	2/7	0.317 ^b
computer(some/expert)			
Type of LIS (n)			
Incomplete	6		
Classical	2		
Total	1		
Time since onset LIS	14.8 (1-55)		

Cause of LIS was ALS (4), brainstem stroke (2), cerebral palsy (1), brainstem AVM (1), and Duchenne muscular dystrophy (1)

Mastery Task Results (N = 17)

	PLIS (n = 6)			Controls (n = 9)			
Level	Ν	AUC	TER (%)	N	AUC	TER (%)	
1	6	.73 (.116), .5693	9.1 (18.61), 0-66.7	9	.81 (.071), .6992	5.9 (15.97), 0-71.4	
2	4	.76 (.124), .5693	9.3 (21.04), 0-71.4	8	.81 (.074), .6992	10.2 (27.15), 0-100.0	
3	2	.83 (.105), .7193	4.1 (10.21), 0-25	7	.83 (.067), .7392	6.7 (11.40), 0-33.3	
4	1	.92 (.014), .9193*	0 (0), 0	6	.86 (.056), .7992	21.0 (21.83), 0-71.4	
5	1	.92 (.014), .9193*	15.4 (24.88), 0-57.1	6	.86 (.056), .7992	11.3 (12.59), 0-33.3	

- N = number of participants who successfully completed a given level (out of 6 for PLIS and 9 for controls)
- AUC = Area under the receiver operating characteristic curve calibration scores of participants who passed each level
- TER = total error rate for participants who passed each level

Mastery Task Results (N = 15)

	PLIS	Controls	р	
Maximum AUC score	.71 (.113), .6293	.83 (.068), .7092	0.045 ^{a,b}	
Highest level completed	2.3 (1.51), 1-5	4.0 (1.58), 1-5	0.069ª	
Number of sessions	1.7 (0.82), 1-3	1.3 (0.50), 1-2	0.414ª	

- All participants starting mastery task completed at least level 1
- At higher levels, fewer participants were successful and higher AUC scores were required to pass
- 1/6 PLIS and 6/9 controls passed all 5 levels
- Controls had significantly higher AUC scores than PLIS, and tended to reach higher levels
- Several PLIS consistently achieved low AUC scores
 - Spasticity, meds, external interference, attention,

Challenges

Participant issues

- Physical positioning
- Fatigue
- Decreased aroual/attention
- Medications
- Eye control

Equipment issues

- Interference from other medical equipment
- Lengthy set up time requiring skilled personnel
- Portability

Service Delivery

- Training
- Cost
- Caregiver responsibility
- Technology support needs

Next steps

- Use LM to better select subset of symbols to display
- Use LM to add strings (words) to display
- Inclusion of personalized LM's
- Vigilance and attention measures
- Improved artifact reduction algorithms
- Patient-centered outcomes framework

"BCI also can open new doors, which is hard to do when you're literally locked-in." GB

