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Introduction: DailyDose is a decision support system designed to provide real time dosing 

advice and weekly insulin dose adjustments for adults living with type 1 diabetes using multiple 

daily insulin injections.  

Materials and Methods: Twenty-five adults were enrolled in this single-arm study. All 

participants used Dexcom G6 for continuous glucose monitoring, InPen for short-acting insulin 

doses, and Clipsulin to track long-acting insulin doses. Participants used DailyDose on an iPhone 

for 8 weeks. The primary endpoint was % time in range (TIR) comparing the 2-week baseline to 

the final 2-week period of DailyDose use.  

Results: There were no significant differences between TIR or other glycemic metrics between 

the baseline period compared to final 2-week period of DailyDose use. TIR significantly 

improved by 6.3% when more than half of recommendations were accepted and followed as 

compared with 50% or less of recommendations (95% C.I. 2.5-10.1%, P=.001).  

Conclusions: Use of DailyDose did not improve glycemic outcomes as compared to the baseline 

period. In a post hoc analysis, accepting and following recommendations from DailyDose was 

associated with improved TIR.  

Clinical Trial Registration number: NCT04428645 

 

 



 

Introduction  

Hyperglycemia and hypoglycemia are commonplace for people living with type 1 diabetes 

(T1D). Continuous glucose monitoring (CGM) has significantly reduced, but not eliminated, 

dysglycemia.1 Automated insulin delivery can further reduce dysglycemia,2-4 but requires the use 

of an insulin pump and is inaccessible for some. Many people living with T1D continue to use 

multiple daily insulin (MDI) injections.5 DailyDose is an iPhone application that is designed to 

support this population by 1) allowing for bolus calculation based on inputs including 

carbohydrate intake, CGM value and trend, and exercise information, 2) providing 

recommendations for carbohydrate intake based on exercise type, intensity, and duration, and 3) 

providing weekly recommendations for adjustments in insulin doses at specific times of day, 

including basal insulin dose, carbohydrate ratios or fixed mealtime doses, and correction factor.6 

An example screen from DailyDose is shown in Figure 1. Described here are results from the 

first proof of concept study evaluating glycemic outcomes with use of DailyDose over 8 weeks 

as compared to 2 weeks of use of CGM alone.  

 

Methods 

From July 2020 to November 2021, 25 adults with T1D were enrolled at Oregon Health & 

Science University. Participants provided written informed consent. This study was conducted 

under U.S. Food and Drug Administration–approved investigational device exemption and 

OHSU Institutional Review Board approval. 

The inclusion criteria required diagnosis of T1D for at least 1 year, ages 18 to 60 years, use of 

MDI, and A1C of 7.0-10%. Exclusion criteria included pregnancy or intending to become 



pregnant, cardiovascular disease, estimated glomerular filtration rate <60 mL/min, hypoglycemia 

unawareness, or an episode of severe hypoglycemia in the past 6 months. For the 2-week 

baseline period, participants wore Dexcom G6 and continued their typical insulin doses. CGM 

alarms were set at 70 mg/dL and 250 mg/dL for both baseline and intervention periods. After 

completion of the baseline period, participants were provided with a smartphone running 

DailyDose. For short-acting insulin, participants were provided InPen devices (Companion) with 

Novolog cartridges (Novo Nordisk). Insulin doses were relayed via Bluetooth and captured in 

HealthKit (Apple), which relayed these data to DailyDose for calculation of insulin-on-board. 

Long-acting insulin doses were captured using Clipsulin and the DIABNEXT app 

(DIABNEXT). DailyDose displayed CGM and allowed for short-acting insulin dose calculation 

based on CGM values and trends or capillary blood glucose values, insulin-on-board, 

carbohydrate input, carbohydrate ratio(s), correction factor(s), and target(s). DailyDose also 

incorporated advice for managing glucose with exercise based on a published consensus 

statement7 with recommendations to reduce short-acting insulin doses or ingest additional 

carbohydrate. DailyDose used machine learning forecasting algorithms to alert the participant 

when glucose was predicted to be low within the next 30 minutes8 and also in the event of 

predicted nocturnal hypoglycemia.9 DailyDose provided up to five recommendations each week 

using a case-based reasoning algorithm.6 Weekly recommendations could include adjusting basal 

insulin dose, carbohydrate ratios, or correction factors specific to certain times of day. To reflect 

real world use, participants could accept or reject each individual recommendation without input 

from the study team. Accepting a recommendation means that if the app recommended a change 

to insulin dosing (e.g. change a carbohydrate ratio or correction factor at a certain time of day), 

then the participant accepted that change and the setting was changed in the app. We also 



considered whether the person followed the recommendations. A person followed the 

recommendations if they dosed insulin within ±25% of what was recommended by the 

DailyDose bolus calculator and if they used the bolus calculator for at least 75% of short-acting 

insulin boluses recorded by the InPen. Due to the long-acting properties of degludec and glargine 

U-300, participants using these insulins were only given recommendations to adjust long-acting 

insulin at most every 2 weeks. A study investigator set constraints on maximum/minimum 

settings for short- and long-acting insulin during the onboarding process. DailyDose was not able 

to recommend insulin dose changes outside of this range. 

The prespecified primary outcome was % TIR (CGM 70-180 mg/dL) comparing the final 2-

week period of use of DailyDose with the 2-week baseline period. Secondary endpoints based on 

CGM values were mean glucose, % time <70 mg/dL, % time <54 mg/dL, % time >180 mg/dL 

and % time >250 mg/dL. We estimated that 20 subjects provide 90% power to detect a paired 

difference in % TIR of 10% or more on the absolute scale between the first and final 14 days of 

the study, assuming a standard deviation (SD) of 13% and a two-sided test with alpha = 0.05.  

Differences were evaluated longitudinally using generalized linear mixed effects models with an 

indicator variable for final vs. baseline period and a random intercept for participant. We use 

linear regression for mean glucose and beta regression10 for % time in the defined glucose 

ranges. We report p-values from the Wald test of time period. For two skewed variables, % time 

<54 mg/dL and the coefficient of variation of glucose, we used the nonparametric Wilcoxon 

matched-pairs signed-rank test. Additionally, for the primary outcome, we examined potential 

effects of enrollment sequence as well as % of missing CGM data. 

An added post hoc analysis assessed the impact of accepting and following recommendations on 

glycemic outcomes. Specifically, we compared glucose outcomes on weeks when more than 



50% of recommendations were accepted and followed on the prior week as compared to when 

less than 50% of recommendations were accepted and followed on the prior week. For most 

weeks, 100% of recommendations were either accepted and followed (n=65) or 100% of 

recommendations were rejected or not followed (n=27). For a smaller number of weeks, a subset 

of recommendations were accepted while other recommendations were rejected (n=14). We 

chose a cut-off of 50% for accepted and followed recommendations post-hoc to determine if 

generally accepting and following recommendations leads to better glucose outcomes compared 

with not accepting and following recommendations. However, we found that improvement in 

TIR improved linearly for the case when no recommendations were accepted and followed (0% 

of recommendations accepted and followed), to some recommendations accepted and followed 

(>0 and < 100%), to all recommendations accepted and followed (100%) as shown in 

Supplementary Figure 1. Starting after the baseline run-in, CGM data were aggregated into 7-day 

periods. TIR was centered on each participant's mean and was modeled as a function of having 

accepted and followed the previous week's recommendations, controlling for week and for 

baseline TIR. The mixed effects model included a random intercept for participant and an 

autoregressive structure on the residuals to account for the correlation between observations from 

the same person and adjacent in time. 

Analyses were conducted using Stata version 16.1 and SAS version 9.4 for Windows 

(SAS Institute, Cary NC) using the GLIMMIX procedure for beta regression. 

 

Results 

Twenty-five adults living with type 1 diabetes were enrolled, consisting of 1 Asian, 2 Black, and 

22 White participants with a mean age of 35.8 years. Fourteen of the participants were female. 



Participants had a baseline A1C 8.2% and 60% used CGM prior to study enrollment. One 

participant withdrew due to CGM connectivity issues and was not included in the analysis.  

TIR was not significantly different during the baseline 2-week period as compared to the final 2-

week period of DailyDose use (mean ± SD of 50.7 ± 14.9% versus 46.9 ± 17.8%, P = 0.25). 

There was no significant difference in improvement in TIR for those who used CGM prior to the 

study as compared to those who did not (P=.186). Similarly, secondary endpoints of mean 

glucose, % time <70 mg/dL, and other glycemic metrics were not significantly different between 

the two periods (Table 1). TIR significantly improved by 6.3% in a post hoc analysis when 

comparing weeks when more than half of recommendations were accepted and followed within a 

week, as compared to half or less of recommendations (95% CI 2.5-10.1%, P=.001, Figure 2). 

The weekly % of recommendations that were accepted had a bimodal distribution. All of the 

recommendations were accepted for 62% of the study weeks, none were accepted for 25% of the 

weeks, and some of the recommendations were accepted for 13% of the weeks.  

A total of 6,694 short-acting insulin doses were recorded during the study (range 54-651 across 

participants). The DailyDose bolus calculator was used for 81.9% of short-acting insulin doses. 

When the bolus calculator was used, 67.5% of the time the dose delivered was within 0.5 units of 

the dose recommended by DailyDose, 14.7% of the time the dose delivered was more than 0.5 

units above the recommended dose, and 17.8% of the time the dose delivered was more than 0.5 

units below the recommended dose. Post hoc, we evaluated whether TIR was associated with the 

percent of the time in a week when participants followed the short-acting insulin DailyDose 

bolus calculator recommendations within ±0.5 units using a mixed effects model while 

controlling for (1) the percent of time that the user accepted the weekly recommendations that 

week, and (2) the percent of the time that the bolus calculator was used when short-acting insulin 



was dosed. This mixed effects analysis showed that compared with a baseline when the bolus 

calculator would never be used to deliver insulin within ±0.5 units, there was a 16.9% increase in 

TIR for weeks when participants would consistently deliver insulin within this ±0.5 units range 

(P=.012). Importantly, there was no increased likelihood of hypoglycemia associated with 

following the DailyDose bolus calculator within ±0.5 units (P=.159).  

There were no serious adverse events.  

 

Discussion  

Improving glucose control in people living with T1D on MDI with the use of decision support is 

challenging. There have been numerous published approaches to decision support for 

management of type 1 diabetes.11 In a multi-center randomized controlled trial involving adults 

and adolescents living with T1D,12 TIR improved similarly with respect to baseline in both 

groups with no significant difference with decision support, but outcomes improved for active 

users of the decision support app. In the current study, TIR did not improve during the final 2-

week period with the use of DailyDose as compared to the baseline 2-week period. Accepting 

and following more than half of DailyDose recommendations within a week was associated with 

improved TIR. The direction of causality is not clear. This improvement could have been related 

to the impact of the recommendations or the behavior of accepting recommendations may be 

associated with other behaviors such as better adherence to their diabetes regimen. An increase 

in percent TIR of 16.9% was associated with delivery of short-acting insulin as recommended by 

the DailyDose bolus calculator within ±0.5 units. This is not surprising, as we would expect that 

following the bolus calculator guidelines would result in less hypo- and hyperglycemia and 

improved TIR. The DailyDose bolus calculator is different than current commercial bolus 



calculators in that it adjusts insulin dose recommendations based on not just the current CGM 

level and estimated carbohydrate intake, but also in response to the CGM trend and anticipated 

exercise (Figure 1, left panel). The association of a significant improvement in TIR when the 

bolus calculator was followed may be partially due to including CGM trend and anticipated 

exercise in the bolus calculation, however further study is required to confirm this.    

Limitations of this study include small sample size and lack of a randomized control arm. In 

addition, 40% of participants did not use CGM prior to the study, which could have impacted 

glucose control over the course of the study as CGM is known to improve glycemic control in 

adults with type 1 diabetes on MDI.1 However, all participants used unblinded CGM during the 

baseline 2-week period given this known beneficial impact of CGM and there was no difference 

in change in TIR between pre-study CGM users and non-CGM users.  

For many, decision support alone may not be sufficient to improve glycemic control as it does 

not address issues such as taking insulin after eating or missed insulin doses. Diabetes self-

management education and support (DSMES) is a key aspect of diabetes care and is important 

for addressing issues such as mistimed insulin doses.13 Timing of insulin administrations and 

rates of missed insulin doses were not collected as a part of this study and may have been 

important contributors to hyperglycemia. Participants used the DailyDose bolus calculator and 

took the recommended dose approximately 55% of the time. It is important for bolus calculators 

to be simple, fast and easy to use. And they should enable users to quickly understand the 

scenarios under which it is best to override the bolus calculator. In addition, diabetes distress 

may significantly impair self-care and impact quality of life and may require behavioral health 

intervention.14 Behavioral health services and DSMES were not components of the study 

described here. It is feasible that combining decision support with other interventions such as 



diabetes education and/or behavioral health services may lead to better outcomes and this is a 

potential area for future research.    

 

Conclusion 

Use of DailyDose did not improve glycemic outcomes as compared to the baseline period. In a 

post hoc analysis, accepting and following recommendations from DailyDose was associated 

with improved TIR. Future research is needed to increase explainability and transparency of 

decision support systems to enable increased acceptance of recommendations. Further work is 

also needed to assess if incorporating additional interventions such as DSMES alongside 

decision support can improve TIR and quality of life.   
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Table 1: Comparisons of CGM metrics for 2-week baseline period and final 2-week DailyDose 
period. P value for the difference baseline and final periods for n=24 study participants using (a) mixed 
effects beta regression for % TIR, (b) mixed effects linear regression for mean glucose, or (c) 
nonparametric Wilcoxon matched-pairs signed-rank test for highly skewed percent time <54 mg/dL and 
glucose coefficient of variation. Data are aggregated to one observation per person per period for analysis. 
 

 
Baseline 2-week 

period 
Final 2-week 

DailyDose period  Difference  
 Mean (SD) Mean (SD) Mean (SD) p 
Primary endpoint        
Time spent 70-180 mg/dL, % 50.7 (14.9) 46.9 (17.8) -3.8 (15.8) 0.25a 
Secondary endpoints 

       

Mean glucose, mg/dL  184 (24) 194 (33) 11 (28) 0.057b 
Time spent <70 mg/dL, % 1.6 (1.6) 1.3 (1.3) -0.3 (1.0) 0.180a 
Time spent <54 mg/dL, % 0.183 (0.385) 0.184 (0.383) 0.0006 (0.472) 0.46 c 
Time spent >180 mg/dL, % 47.7 (15.5) 51.8 (18.0) 4.1 (15.9) 0.224 a 
Time spent >250 mg/dL, % 16.9 (10.1) 22.3 (16.4) 5.4 (12.5) 0.025 a 
Coefficient of variation, % 34.7 (4.5) 34.4 (4.1) -0.3 (4.2) 0.67 c 

 



 
Figure 1: Example screenshots from DailyDose. The left panel shows the bolus calculator screen 
indicating the recommended short-acting insulin dose calculated based on a glucose of 205 mg/dL and 
estimated meal carbohydrates, with a reduction in the insulin dose for planned exercise. The right panel 
shows two example recommendations, one recommending a change in the correction factor and one 
recommending a change in basal insulin dose.    
 



 
Figure 2: Plot of % TIR comparing weeks during which half or fewer recommendations were accepted 
during the prior week as compared to when more than half of recommendations were accepted. N = 24 
participants and 184 weeks. Note that TIR increased by a mean of 6.3% (P = .001) when more than half 
of recommendations were accepted and followed, as compared to when less than half of 
recommendations were accepted. Mean difference estimated using a longitudinal mixed effects regression 
model controlling for percent time in range at baseline, week of observation, and adherence. 
 



 

Supplementary Figure 1: Plot of % time in range comparing weeks during which none of the 
recommendations were accepted and followed during the prior week as compared to when some of 
recommendations were accepted and followed (>0% and <100%) as compared to when all of the 
recommendations were accepted and followed. N = 24 participants and 184 weeks. Note that time in 
range increased linearly across the three groups. 
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