
Journal Pre-proof

Quantifying the impact of physical activity on future glucose trends using machine
learning

Nichole S. Tyler, Clara Mosquera-Lopez, Gavin M. Young, Joseph El Youssef,
Jessica R. Castle, Peter G. Jacobs

PII: S2589-0042(22)00158-4

DOI: https://doi.org/10.1016/j.isci.2022.103888

Reference: ISCI 103888

To appear in: ISCIENCE

Received Date: 24 June 2021

Revised Date: 19 November 2021

Accepted Date: 4 February 2022

Please cite this article as: Tyler, N.S., Mosquera-Lopez, C., Young, G.M., El Youssef, J., Castle,
J.R., Jacobs, P.G., Quantifying the impact of physical activity on future glucose trends using machine
learning, ISCIENCE (2022), doi: https://doi.org/10.1016/j.isci.2022.103888.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2022 The Author(s).

https://doi.org/10.1016/j.isci.2022.103888
https://doi.org/10.1016/j.isci.2022.103888


Jo
urn

al 
Pre-

pro
of



1 
 

Quantifying the impact of physical activity on future glucose trends using 1 

machine learning  2 

 3 

Nichole S. Tyler1*, Clara Mosquera-Lopez1, Gavin M. Young1, Joseph El Youssef2, 4 

Jessica R. Castle2, Peter G. Jacobs1** 5 

   6 

Affiliations:  7 

1 Artificial Intelligence for Medical Systems (AIMS) Lab, Department of Biomedical 8 

Engineering; Oregon Health & Science University; Portland, OR, 97232; USA  9 

2Harold Schnitzer Diabetes Health Center, Division of Endocrinology; Oregon Health & 10 

Science University; Portland, OR, 97239; USA  11 

** Lead Contact: Peter G. Jacobs, Email address: jacobsp@ohsu.edu 12 

* Corresponding Author: Nichole S. Tyler, Email address: tylern@ohsu.edu 13 

  14 

Jo
urn

al 
Pre-

pro
of

mailto:jacobsp@ohsu.edu
mailto:tylern@ohsu.edu


2 
 

Summary (148/150 words) 15 

 16 

Prevention of hypoglycemia (glucose <70 mg/dL) during aerobic exercise is a major 17 

challenge in type 1 diabetes.  Providing predictions of glycemic changes during and 18 

following exercise can help people with type 1 diabetes avoid hypoglycemia.  A unique 19 

dataset representing 320 days, and 50,000+ time points of glycemic measurements was 20 

collected in adults with type 1 diabetes who participated in a 4-arm crossover study 21 

evaluating insulin-pump therapies, whereby each participant performed 8 identically 22 

designed in-clinic exercise studies.  We demonstrate that even under highly controlled 23 

conditions, there is considerable intra- and inter-participant variability in glucose 24 

outcomes during and following exercise.  Participants with higher aerobic fitness 25 

exhibited significantly lower minimum glucose and steeper glucose declines during 26 

exercise. Adaptive, personalized machine learning (ML) algorithms were designed to 27 

predict exercise-related glucose changes.  These algorithms achieved high accuracy in 28 

predicting the minimum glucose and hypoglycemia during and following exercise 29 

sessions, for all fitness levels. 30 

 31 

Keywords: Type 1 Diabetes, Diabetes, Aerobic Exercise, Decision Support, Artificial 32 

Intelligence, Machine Learning, Medicine, Endocrinology 33 
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 35 

INTRODUCTION 36 

Physical activity has been shown to reduce cardiovascular risk factors in people with 37 

type 1 diabetes (Bohn et al., 2015) and regular physical exercise has recently been 38 

shown to result in improved time in target glucose range (70-180 mg/dL)(Riddell et al., 39 

2020a).  However, exercise is also known to cause substantial changes in glucose.  40 

These changes in glucose vary per exercise modality (Bussau et al., 2006; Colberg et 41 

al., 2016; Lascar et al., 2014; Moniotte et al., 2017; Reddy et al., 2018; Yardley et al., 42 

2013) and are most dramatic during steady aerobic exercise (Riddell et al., 2020b).  43 

There is an increased risk of hypoglycemia during exercise that occurs due to altered 44 

muscular uptake of glucose during exercise, and delayed hypoglycemia that can occur 45 

on nights following exercise due to changes in insulin-sensitivity (Man et al., 2009; 46 

McMahon et al., 2007; Reddy et al., 2019; Wahren, 1977).  These dynamic processes 47 

underlying glucose uptake are compounded by regular bouts of exercise (Boulé et al., 48 

2005; Steenberg et al., 2019). While regular exercise can improve overall health, 49 

avoiding hypoglycemia during exercise is a known challenge for people with type 1 50 

diabetes (Wilson et al., 2020b).  51 

 52 

Continuous glucose monitoring technologies (CGM) can provide real-time alerts to the 53 

occurrence of hypoglycemia (< 70 mg/dL) or hyperglycemia (> 180 mg/dL) during 54 

exercise.  And while certain commercial CGM systems like the Dexcom CGM have 55 

recently been reported to achieve 13.3% mean absolute relative error (MARE) during 56 

aerobic activity (Guillot et al., 2020), use of CGM alone is not sufficient to prevent 57 
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hypoglycemia.  Commercially available automated insulin delivery (AID) systems have 58 

been shown to improve time in glucose target range across real-world daily activities 59 

(Brown et al., 2019; Garg et al., 2017), but the exercise modalities of these systems are 60 

limited to user-selected modifications to basal insulin and target glucose during 61 

announced physical activity (MiniMed 670G System User Guide, Medtronic, 2017; t:slim 62 

X2 Insulin Pump with Control-IQ Technology User Guide, Tandem Diabetes Care, 63 

2020) (Wilson et al., 2022).  AID algorithms that incorporate real-time physical activity 64 

data to prevent hypoglycemia typically reduce automated insulin and, in the case of 65 

dual-hormone systems, increase glucagon in anticipation of glucose drops during 66 

aerobic exercise (Castle et al., 2018; Jacobs et al., 2016; Wilson et al., 2020a).  67 

Furthermore, adaptive AID algorithms that incorporate activity data have been 68 

developed to estimate an individual’s plasma insulin and future glucose concentrations 69 

for the purpose of personalizing insulin delivery (Hajizadeh et al., 2018a; Hajizadeh et 70 

al., 2018b).  However, even these systems do not completely eliminate exercise-71 

induced hypoglycemia.  Consensus statement guidelines have been developed to help 72 

people with type 1 diabetes make decisions regarding modification of insulin dosages 73 

and carbohydrate intake prior to and during exercise (Moser et al., 2020; Riddell et al., 74 

2017), but people with type 1 diabetes will oftentimes need to use trial-and-error 75 

approaches to learn how to avoid hypoglycemia during exercise.  Both automated 76 

hormone delivery and decision support systems currently lack the ability to accurately 77 

predict exercise-induced changes in glucose.  In addition, there can be significant inter 78 

and intra-person variability in glucose changes during exercise.  Exercise-related 79 

glucose changes in people with type 1 diabetes have not yet been precisely quantified 80 
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in individuals and across populations when considering different insulin therapies, or 81 

baseline fitness levels.  82 

 83 

Machine learning is a powerful tool whereby machines are designed to solve problems 84 

or perform sophisticated tasks and can even help to make medical decisions, or provide 85 

decision support, for diabetes management.  Machine learning approaches have been 86 

used in disease detection (Li et al., 2018), insulin dose modification through decision 87 

support (Tyler and Jacobs, 2020; Tyler et al., 2020), and can be expanded to provide 88 

exercise decision support directly to a person living with type 1 diabetes, or to AID 89 

systems in order to adjust insulin during physical activity (Reddy et al., 2019; Wilson et 90 

al., 2020a).  While algorithms that have been designed to predict future glucose exhibit 91 

relatively low root mean squared error (RMSE) during non-exercise periods (14.0 92 

mg/dL-18.0 mg/dL) (Mosquera-Lopez and Jacobs, 2021; Pérez-Gandía et al., 2010; 93 

Zecchin et al., 2012; Zhu et al., 2020), recent studies have indicated that the accuracy 94 

of these algorithms is oftentimes far worse during exercise (46.16 mg/dL) (Hobbs et al., 95 

2019).  Machine learning models have already been developed to predict changes in 96 

glucose immediately following aerobic exercise (Ben Brahim et al., 2015; Hobbs et al., 97 

2019; Reddy et al., 2019; Romero-Ugalde et al., 2019), and, when integrated with a 98 

decision support system, increase the minimum glucose measured during in-clinic 99 

exercise sessions (Breton et al., 2018).  Still, these algorithms oftentimes have poor 100 

accuracy during real-world scenarios (Hobbs et al., 2019), demonstrate large variability 101 

in performance between individuals (Xie and Wang, 2020) and have not been evaluated 102 

across varying physical fitness levels.  103 
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 104 

Population machine learning models are trained on a group of people and are designed 105 

to provide predictions for all people.  Whereas a personalized model learns an 106 

individual’s unique physiology in order to improve prediction accuracy for an individual.  107 

Personalized models can be designed by training machine learning models specifically 108 

on an individual’s data (Romero-Ugalde et al., 2019), by clustering a number of similar 109 

people into groups prior to model training and then training a model on that cluster 110 

(Contreras et al., 2017; Montaser et al., 2019), or by adapting a model in real-time using 111 

newly observed data in order to improve glucose predictions (Hajizadeh et al., 2018b; 112 

Hobbs et al., 2019).  It is not yet clear how personalization impacts the prediction 113 

accuracy of exercise-related changes in glucose.  114 

 115 

Herein we characterize the impact of aerobic exercise on glucose changes using a 116 

unique dataset collected during highly controlled, aerobic exercise sessions in adults 117 

with type 1 diabetes.  Glucose variations are characterized per participant, insulin 118 

therapy, and are further explored with respect to baseline physical fitness.  Personalized 119 

machine learning models were then designed to estimate the minimum glucose during 120 

aerobic exercise and four hours following the start of exercise, and to quantify the 121 

impact of personalization on model accuracy.  We considered three machine learning 122 

algorithms, including a multivariate adaptive regression spline (MARS) model 123 

(Friedman, 1991), a previously described logistic regression model (Breton et al., 2018), 124 

and an autoregressive (AR) model based on a previously described autoregressive 125 

model with exogenous inputs (ARX) (Romero-Ugalde et al., 2019).  The dataset used to 126 
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train and benchmark the approach was collected in a previously published study 127 

whereby aerobic exercise was performed 8 times per study participant under identical 128 

exercise intensity and duration, meal content and timing conditions, and across multiple 129 

diabetes management strategies including automated insulin delivery, automated insulin 130 

and glucagon delivery, insulin pump therapy with predictive low-glucose suspend, and 131 

standard insulin pump therapy (Castle et al., 2018).  The findings obtained from this 132 

unique dataset can serve as a benchmark for comparison with other adaptive prediction 133 

algorithms, since we anticipate that the repeatability of the changes in glucose will be 134 

substantially reduced under free-living exercise conditions compared with these 135 

controlled conditions.  136 

 137 

RESULTS 138 

Variations in blood glucose dynamics during identically designed exercise scenarios 139 

To evaluate the repeatability of exercise-related glucose changes, participant glucose 140 

outcomes were obtained from 20 adults with type 1 diabetes who each performed 8 141 

identically-designed aerobic exercise sessions at 70% VO2max for 43.2 minutes on 142 

average (N = 160 observations).  To control for additional variability in glucose trends 143 

that can impact exercise-related glucose changes, the in-clinic exercise sessions were 144 

designed such that participants consumed a self-selected breakfast at 8 am, daily 145 

activities at 10 am, lunch at 12 pm, and performed exercise at 2 pm.  Meals of identical 146 

nutritional content were consumed at the same time, and aerobic treadmill exercise was 147 

performed at the same time for each of the 8 in-clinic visits.  Figure 1 shows the 148 

variability in the changes in blood glucose during exercise for each participant across 149 
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the entire study (Figure 1A) and also organized by insulin therapy (Figure 1B-E).  The 150 

difference in exercise-related blood glucose changes measured during highly controlled 151 

exercise sessions (Figure 1B-E, connecting dashed and solid lines) are reported as the 152 

difference averaged across all study arms, per participant in Table 1.  Glucose dropped 153 

during exercise for nearly every exercise session, and glucose dropped further in the 4 154 

hour period after exercise was concluded for some subjects (Figure 1B-E, circles).  155 

Despite highly repeatable exercise conditions, food intake, and glucose management 156 

strategies, there was still substantial intra-participant variability of the change in glucose 157 

during exercise across all 8 identical exercise scenarios, ranging across participants 158 

from 23.1 mg/dL (participant 13) to 56.4 mg/dL (participant 9) (Table 1).  While 159 

variability is smaller for some participants when looking at the two exercise sessions 160 

performed under a given diabetes management strategy, substantial variability in 161 

glucose changes during exercise is still observable for other study participants (Figure 162 

1B-E).  The average change in blood glucose during exercise and variability in this 163 

change is reported per therapy arm and per participant in Table 1.   164 

 165 

Physical fitness impacts changes in glucose observed during physical activity 166 

Baseline aerobic fitness was assessed by VO2max norms for men and women using a 167 

rating scale from the American College of Sports Medicine (American College of Sports 168 

Medicine’s Complete Guide to Fitness & Health by Barbara Bushman, 2017) that ranks 169 

individuals on a scale of very poor, poor, fair, good, excellent, and superior.  We found 170 

that participants with higher aerobic fitness (rated as good, excellent, and superior 171 

VO2max) exhibited significantly lower minimum glucose during aerobic exercise than 172 
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those with lower aerobic fitness (rated as very poor, poor, and fair VO2max) (average 173 

minimum glucose 75.9 mg/dL vs 103.1 mg/dL, p <0.001).  Participants with higher 174 

aerobic fitness also exhibited lower CGM-measured minimum glucose compared with 175 

participants with lower aerobic fitness in the 4-hours following the start of exercise (70.4 176 

mg/dL vs 85.4 mg/dL, p <0.001).  And, the higher aerobic fitness participants had 177 

significantly steeper glucose drops during exercise (-2.2 mg/dL/min vs -1.8 mg/dL/min, p 178 

<0.05) (Figure 2A-C).  Participants with higher aerobic fitness exhibited lower glucose 179 

values across the in-clinic study days (Figure 2D-E), with significantly lower glucose 180 

during activities of daily living when they were physically active (p < 0.05), during the 181 

aerobic exercise, and in the overnight period following in-clinic aerobic exercise. 182 

 183 

Population model predictions achieve good prediction accuracy 184 

Three types of population machine learning models were designed: a MARS model to 185 

predict minimum glucose following exercise, a logistic regression model to predict 186 

hypoglycemia following exercise, and an AR model to predict CGM values at the end of 187 

exercise.  Features used to model minimum glucose during and after exercise were 188 

extracted from the data collected during each of the in-clinic exercise sessions (N = 160 189 

exercise sessions) and are defined in Table S1.  Leave-one-participant-out cross-190 

validation was used during algorithm training to develop generalizable predictive models 191 

(Figure S1).  Accuracy of the three machine learning models to predict minimum blood 192 

glucose at the end of exercise and also CGM-measured minimum glucose during the 4 193 

hours following the start of exercise are reported in Table 2.  The population MARS 194 

model estimated minimum glucose during exercise with an MAE of 20.0 mg/dL; a 195 
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sensitivity of 63%, and an accuracy of 67% to predict hypoglycemia when cross-196 

validated across all 20 participants with each participant left out during the training.  The 197 

population logistic regression model achieved a sensitivity of 64% and accuracy of 61% 198 

in predicting hypoglycemia during exercise when cross-validated on all 20 participants.  199 

The population AR model exhibited worse MAE than the MARS model, 23.8 mg/dL, and 200 

achieved the highest sensitivity (71%) and accuracy (81%) to predict CGM-measured 201 

glucose < 70 mg/dL 40 minutes after the start of exercise, when cross-validated across 202 

all 20 participants. 203 

 204 

For longer prediction horizons of 4 hours after the start of exercise, the population 205 

MARS model exhibited a MAE of 20.1 mg/dL, and a sensitivity of 62% and an accuracy 206 

of 56% to detect CGM-measured hypoglycemia when cross-validated across all 20 207 

participants.  The results of the logistic regression model to predict hypoglycemia during 208 

exercise and 4 hours following the start of exercise were similar both during exercise 209 

and 4-hours after exercise.  The logistic regression model achieved a sensitivity of 63% 210 

and accuracy of 58% to detect CGM-measured hypoglycemia when cross-validated 211 

across all 20 participants.  The AR model was not designed for the 4-hour predictive 212 

window and therefore results are not shown. 213 

 214 

Prior exercise-related changes in glucose help to predict future nadir glucose  215 

The benefit of personalization was evaluated by first considering whether the inclusion 216 

of participant exercise history, or data collected during previous exercise sessions, can 217 

improve accuracy to predict the minimum glucose during exercise.  To do this, a second 218 
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MARS model was designed that also incorporates participant exercise history features 219 

(Table S2).  Exercise data features that were found to be predictive of future glucose 220 

trends included (1) the participant’s average metabolic expenditure measured during 221 

other aerobic exercise sessions, and (2) the average change in glucose measured 222 

during other aerobic exercise sessions by the participant.  When evaluated on the 223 

holdout set, the MARS model that included exercise history reduced MAE by 39%, from 224 

23.4 mg/dL to 14.3 mg/dL, improved sensitivity to predict hypoglycemia during exercise 225 

from 50% to 73%, and improved accuracy from 75% to 81% (Table 2).  Cross-validation 226 

across all 20 participants showed that the inclusion of participants’ exercise history into 227 

the MARS model reduced MAE from 20.0 mg/dL to 17.6 mg/dL, improved sensitivity 228 

from 63% to 66% to detect hypoglycemia, and improved accuracy from 67% to 70%. 229 

 230 

For longer prediction horizons of 4 hours, the MARS model that included exercise 231 

history performed similarly to the MARS model that was designed without exercise 232 

history, when cross-validated across all 20 participants (Table 2). 233 

 234 

Adaptive personalization improves the accuracy of predictive models 235 

The benefit of personalization was also investigated through adaptation of the machine 236 

learning models to better predict individual participants’ exercise-related glucose 237 

changes.  Stochastic gradient descent (An overview of gradient descent optimization 238 

algorithms, Ruder, 2016)   was used to incorporate the exercise information obtained 239 

from a participants exercise session (e.g., data collected during their first study visit) in 240 

order to update the population model parameters.  The adapted model was then used to 241 
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predict the same participant’s outcomes for a separate, held-out exercise session (e.g., 242 

their second study visit).  This adaptation procedure was repeated for each held-out 243 

exercise session, enabling the machine learning model parameters to adapt to an 244 

individual’s data over time as more exercise sessions were observed.  Personalization 245 

of the model coefficients through stochastic gradient descent adaptation improved the 246 

accuracy of all of the predictive algorithms (see Table 2) to estimate glucose during 247 

exercise and 4 hours after the start of exercise.  The improvement from adaptation was 248 

not influenced by the order of the observed exercise sessions, and we report the results 249 

from the original order prior to shuffling.  Gradient descent adaptation of model 250 

coefficients reduced the predictive error of the MARS model from an MAE of 20.0 mg/dL 251 

to an MAE of 18.1 mg/dL, reduced sensitivity from 63% to 61%, and significantly 252 

improved the 20-fold cross-validation accuracy of the MARS model in predicting 253 

hypoglycemia during exercise from 67% to 78% (p<0.05).  The predictive error per-254 

participant can be seen in Table 1.  Adaptation of the logistic regression parameters 255 

improved the sensitivity to predict hypoglycemia during exercise from 64% to 68%, and 256 

significantly improved the accuracy from 61% to 70% (p<0.05), when cross-validated 257 

across all 20 participants.  Adaptation of the AR model improved the cross-validation 258 

MAE from 23.8 mg/dL to 22.0 mg/dL, and improved the sensitivity to detect 259 

hypoglycemia during exercise from 71% to 76% and accuracy from 81% to 83%.   260 

 261 

For longer prediction horizons of 4 hours following the start of exercise, adaptation 262 

reduced the predictive error and improved the accuracy of all of the models.  The 263 

personalization through adaptation of the MARS model coefficients significantly reduced 264 
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the MAE from 20.1 mg/dL to 18.3 mg/dL, reduced sensitivity from 62% to 56%, and 265 

significantly increased the accuracy to predict CGM-measured hypoglycemia 4 hours 266 

following exercise from 56% to 68% (p<0.05).  The adaptation of the MARS model 267 

designed to include prior exercise session metrics reduced the MAE from 21.1 mg/dL to 268 

18.2 mg/dL, reduced sensitivity from 74% to 57% and increased the accuracy to detect 269 

CGM-measured hypoglycemia 4 hours following exercise from 57% to 69% when cross-270 

validated across all 20 participants.  Adaptation of the logistic regression model 271 

increased sensitivity from 63% to 64%, and significantly improved the accuracy from 272 

58% to 70% (p<0.05) to predict CGM-measured hypoglycemia in the 4 hours following 273 

exercise when cross-validated across all 20 participants.  274 

 275 

Figure 3 shows the Parkes consensus grid of the MARS model cross-validation across 276 

all 20 participants in predicting glucose at the end of exercise.  Personalization of the 277 

population MARS model increased the number of observations in the consensus error 278 

grid region A from 110 observations to 115 observations, with no changes in regions C, 279 

D, or E.  When exercise history was included in the design of the MARS model, 280 

adaptation increased the values in region A to 118 observations, with no observations in 281 

regions D and E and 99.4% of observations in the combined A + B regions (Figure 3C).  282 

 283 

Physical fitness impacts predictive performance 284 

The MARS models performed equivalently for higher fitness vs. lower fitness study 285 

participants in terms of mean absolute relative error (Table 3).  The AR performed 286 

worse for the higher fitness participants than the lower fitness participants.  The 287 
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accuracy to detect hypoglycemia during exercise, and in the 4 hours following start of 288 

exercise, was nominally lower in all machine learning models when evaluated on 289 

participants with higher aerobic fitness.  Adaptation improved the accuracy to predict 290 

hypoglycemia for participants with higher and lower aerobic fitness, and across both 291 

prediction horizons (Table 3).  292 

 293 

DISCUSSION  294 

Herein we demonstrate that there is substantial variability in glucose changes during 295 

aerobic exercise in people with T1D even under highly repeatable food intake and 296 

exercise conditions, and that these changes are impacted by baseline physical fitness 297 

levels.  We also present adaptive glucose-forecasting algorithms and demonstrate how 298 

personalization and prior history can improve the accuracy to predict minimum glucose 299 

during and following aerobic exercise.  To our knowledge, this is the first analysis of 300 

exercise-related glucose changes and prediction strategies using an ideal dataset of 301 

highly regimented, identical study exercise visits and across multiple insulin therapies.  302 

In the published clinical study data set used to train the proposed predictive algorithms 303 

(Castle et al., 2018), the specific variations in glucose during exercise were not 304 

presented and a demonstration of differences between individuals with varying aerobic 305 

fitness was not presented.  The data demonstrate that individuals living with type 1 306 

diabetes will experience considerable variability during exercise, even when exercise 307 

occurs in the context of identical meals, exercise intensity and duration, insulin therapy, 308 

and scheduled daily activities.  For some participants, the magnitude of this variability 309 

was diminished when examined within the context of an individual insulin therapy.  From 310 
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a clinical perspective, this highlights the challenge and uncertainty that individuals face 311 

during aerobic exercise; even if someone could undertake the exact same daily 312 

activities, meals, and exercise practices, there will be differences in their glucose 313 

outcomes during exercise.  Part of this variability is explained by insulin therapy and 314 

insulin-on-board, but there are many other factors such as activity level in the days 315 

preceding exercise, and stressors such as sleep quality, illness, or timing of menstrual 316 

cycle that affect insulin sensitivity and glycaemia following exercise.  And, baseline 317 

physical fitness can also have a significant impact on glycemic outcomes during 318 

exercise.  The high intra- and inter-participant variability in glucose trends during 319 

exercise presents an opportunity for adaptive machine learning approaches to help 320 

people with type 1 diabetes avoid acute and long-term complications related to 321 

hypoglycemia.  322 

 323 

The impact of exercise on glucose trends during exercise, and across participants with 324 

varying physical fitness levels, is still an open question (Moser et al., 2020; Yardley and 325 

Sigal, 2021).  While an inverse relationship has previously been observed between the 326 

regularity of exercise and the rate of severe hypoglycemia(Bohn et al., 2015), it has also 327 

been reported that participants with higher aerobic fitness exhibit a greater risk of 328 

hypoglycemia (Al Khalifah et al., 2016).  We contribute definitive findings that 329 

participants with higher aerobic fitness exhibit significantly steeper glucose trends 330 

during exercise, experienced significantly lower glucose at the end of exercise, and 331 

exhibit nominally lower variability in their glycemic outcomes.  This may be due to 332 

physiologic differences; regular exercise impacts muscle fiber content (Yan et al., 2010), 333 
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and a single bout of exercise can prime muscle for future glucose uptake (Steenberg et 334 

al., 2019).  Behavioral differences are also a factor, as participants with higher aerobic 335 

fitness may sustain physical activity and metabolic expenditure longer and more 336 

consistently than participants with lower aerobic fitness.  And although participants with 337 

varying aerobic fitness exhibited significantly different glucose outcomes following 338 

exercise, personalized metrics such as VO2max and fitness ranking require in-clinic 339 

evaluation and are not yet feasible features for incorporation into the design of 340 

accessible predictive algorithms.  It was also observed that participants with higher 341 

aerobic fitness were shown to have significantly lower CGM across the entirety of the 4-342 

arm clinical study; sensor readings for these participants were significantly lower during 343 

activities of daily living, exercise, and in the nighttime and 48-hrs following aerobic 344 

exercise.  This precise knowledge can help to inform new strategies to help people of 345 

different fitness levels avoid exercise-related hypoglycemia. 346 

 347 

Other groups have presented various methods to predict glucose during exercise.  348 

Reddy et al. (Reddy et al., 2019) developed a hypoglycemia prediction algorithm during 349 

exercise using a decision tree and random forest algorithm.  This random forest model 350 

utilized data within first 10 minutes of aerobic exercise to form predictions, and achieved 351 

an 86% sensitivity and 87% specificity to hypoglycemia.  This approach does not 352 

describe adaptation or personalization of models or utilize exercise history.  It was also 353 

limited in that it required data during the first 10 minutes of exercise to estimate 354 

hypoglycemia which makes it impossible for the algorithm to provide automated 355 

hormone dosing or decision support prior to the start of exercise.  The algorithms 356 
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proposed in this manuscript do not use data during the exercise event.  The proposed 357 

algorithms were designed for use prior to the start of exercise, for the purpose of 358 

modifying hormone doses and/or carbohydrate intake.  The AR model that we evaluated 359 

in this paper was presented originally in Romero-Ugalde et al. as an ARX model, where 360 

the model was designed to predict CGM values at 30 minutes following aerobic stair-361 

step exercise, and achieved an RMSE of 7.75 mg/dL (Romero-Ugalde et al., 2019).  We 362 

repeated the methods described in Romero-Ugalde et al., and while we discovered this 363 

method achieves fair accuracy to predict CGM < 70 mg/dL, we were unable to achieve 364 

the performance that was previously reported.  While the AR model, based on the ARX 365 

model described by Romero-Ugalde et al., did not achieve the same predictive error as 366 

the MARS model, the adaptation methods presented herein improved the accuracy of 367 

the AR model to predict CGM < 70 mg/dL and reduced the RMSE.  Since the AR model 368 

only included the 0, 10, and 20-minute CGM data points as feature inputs, we explored 369 

whether including the 5 and 15-minute CGM data points would improve the accuracy of 370 

the AR model.  However, we found that when including these data points, there was no 371 

statistically significant improvement in the accuracy.  This was likely because the CGM 372 

data points at 0, 10, and 20 minutes were smoothed, and so they included information 373 

from the 5 and 15 minute data points.  Breton et al. developed a hypoglycemia 374 

prediction algorithm utilizing the contextual physical activity predictors identified by Ben 375 

Brahim et al. (Ben Brahim et al., 2015).  The accuracy of this model was not reported 376 

and does not describe personalization (Breton et al., 2018).  In the current paper, we 377 

used identical features described by Breton et al. and demonstrated the performance of 378 

the model.  We additionally showed that adaptation can significantly improve the 379 

Jo
urn

al 
Pre-

pro
of



18 
 

performance in predicting hypoglycemia during exercise.  Each of the prior publications 380 

as well as our findings identified the importance of CGM or SMBG measurements at the 381 

start of exercise as a critical predictive feature.  The current manuscript extends the 382 

work done previously by emphasizing the importance of personalization and physical 383 

fitness considerations when designing glucose forecasting algorithms during exercise.    384 

 385 

Personalization of the population-based machine learning models was shown to 386 

improve the accuracy in almost every model-framework, across both short-term and 387 

long-term prediction horizons, and across all validation scenarios.  Adaptation of model 388 

parameters using stochastic gradient descent was shown to significantly improve the 389 

accuracy of detecting hypoglycemia during exercise for the MARS and logistic 390 

regression models.  And adaptation of the MARS and AR models improved overall 391 

accuracy of predictions in terms of MAE.  Personalization of the MARS framework that 392 

included exercise history as an input feature significantly improved predictive accuracy 393 

to detect hypoglycemia during exercise.  The personalized MARS models exhibited 394 

similar RMSE values for both short-term and long-term prediction horizons.  This is 395 

likely due to the study design whereby participants were most active during exercise, 396 

and were instructed to rest until dinner.  And, for some participants, the nadir glucose 397 

occurred during exercise and was equivalent for both prediction horizons.  In real-world 398 

scenarios, predictive RMSE may be higher when people do activities that introduce 399 

variability in glucose in the 4-hour period.  Taken together across all of the models and 400 

validation strategies presented in Table 2, personalization resulted in an average 401 

reduction in minimum glucose error estimations by 12.9%, and an average increase in 402 
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hypoglycemia prediction accuracy of 21.0%.  A strength of the personalization methods 403 

presented in this manuscript is the simplicity of the gradient descent approach, which is 404 

computationally inexpensive and can be implemented easily in other predictive 405 

frameworks with just a few lines of code.  406 

 407 

In summary, individuals on insulin pump therapy who perform aerobic exercise under 408 

highly regimented, nearly identical conditions and intensities will experience day-to-day 409 

variations in exercise-related glucose changes during and following exercise.  Baseline 410 

physical fitness significantly impacts changes in glucose during exercise.  Under these 411 

controlled conditions, glucose data at the start of exercise, as well as data from prior 412 

exercise sessions are informative of anticipated changes in glucose during future 413 

exercise sessions across participants of varying physical fitness levels.  And while 414 

machine learning models can predict the expected changes in glucose during exercise 415 

and can be personalized to provide more accurate predictions, further work is needed to 416 

accurately predict hypoglycemia in participants with higher baseline physical fitness.  417 

Further studies are forthcoming to determine the performance of our adaptation strategy 418 

on at-home exercise session data across participants with varying physical fitness.  The 419 

scientific community is invited to apply this benchmarking dataset in their research by 420 

contacting the lead author for access to the data. 421 

 422 

LIMITATIONS 423 

As a limitation, the candidate model structures described here must be compatible with 424 

gradient-based optimization procedures, and further evaluation is required before being 425 
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implemented in other non-linear model frameworks such as neural networks or decision 426 

tree structures.  The models in this paper were designed and evaluated on in-clinic 427 

exercise data; future studies examining at-home exercise sessions will be required to 428 

develop algorithms for real-world use.  Our analysis utilized data from 20 participants, 429 

and accounts for 320 cumulative days of real-world data, 160 days of which represent 430 

in-clinic exercise data, with over 50,000 data time points.  While the sample size is 431 

small, we propose that this analysis reflects an ideal scenario, and that these results 432 

reflect the upper bound of adaptation performance and glucose variability.   433 

Jo
urn

al 
Pre-

pro
of



21 
 

ACKNOWLEDGEMENTS 434 

Research reported in this publication was supported by the National Institute of 435 

Diabetes and Digestive and Kidney Diseases of the National Institutes of Health under 436 

Award Number 1DP3DK101044-01, F31DK121436 and 1 R01DK120367-01, 437 

R01DK1225833-01, R01DK120367-01.  The content is solely the responsibility of the 438 

authors and does not necessarily represent the official views of the National Institutes of 439 

Health. 440 

 441 

AUTHOR CONTRIBUTIONS  442 

Conceptualization, N.S.T and P.G.J.; Methodology, N.S.T., P.G.J., C.M.L., and G.Y.; 443 

Software, N.S.T.; Formal Analysis, N.S.T.; Resources, P.G.J., J.R.C., and J.E.Y.; Data 444 

Curation, N.S.T., P.G.J, J.R.C., and J.E.Y.; Writing – Original Draft, N.S.T and P.G.J.; 445 

Writing – Review and Editing, N.S.T., P.G.J., C.M.L., G.Y., J.R.C., and J.E.Y.; 446 

Visualization, N.S.T.; Funding Acquisition, N.S.T., P.G.J., J.R.C., and J.E.Y.;  447 

 448 

DECLARATION OF INTERESTS 449 

N.S.T. has nothing to disclose. P.G.J. and J. R. C. have a financial interest in Pacific 450 

Diabetes Technologies, Inc. a company that may have a commercial interest in this type 451 

of research. No other potential conflicts of interest relevant to the article were reported. 452 

 453 

INCLUSION AND DIVERSITY 454 

This analysis utilized previously published human subjects data.  We worked to ensure 455 

ethnic or other types of diversity in the recruitment of human subjects.  We worked to 456 

Jo
urn

al 
Pre-

pro
of



22 
 

ensure gender balance in the recruitment of human subjects.  The final participant 457 

population demographics reflected the population of the city of Portland, OR.  One or 458 

more of the authors of this paper self-identifies as an underrepresented ethnic minority 459 

in science.  One or more of the authors of this paper received support from a program 460 

designed to increase minority representation in science. 461 

 462 

PRIOR PUBLICATION 463 

Parts of this study were presented as a poster at the American Diabetes Association 464 

78th Scientific Sessions, Orlando, FL, June 22-26 2018 465 

 466 

  467 

Jo
urn

al 
Pre-

pro
of



23 
 

MAIN FIGURE TITLES AND LEGEND 468 
 469 
Figure 1. Change in blood glucose measured during identical aerobic exercise 470 

sessions.  471 

(A) The change in glucose measured during 8 identical exercise sessions across a 4-472 

arm clinical study.  The box plot represents the median and interquartile range of the 473 

change in glucose measured during exercise, cross symbols represent outlier values 474 

and each whisker extends to the most extreme data point that is not an outlier (n = 158 475 

observations of SMBG data from 20 participants, whereby each participant is 476 

represented by 8 SMBG observations, and participant 18 is represented by 6 SMBG 477 

observations). 478 

(B-E) the change in glucose measured during aerobic exercise within a given insulin 479 

therapy.  The black x symbol represents the change in glucose measured during an 480 

exercise session, and there are two x symbols per participant per study arm.  The line 481 

drawn between two black x symbols represents the difference in glucose outcomes 482 

measured between the two identically-designed exercise sessions (n = 158 483 

observations of SMBG data from 20 participants across 4 study arms, whereby 484 

participants are represented by 2 observations per study arm, and data is not available 485 

for participant 18 in the standard of care study arm).  The open black circle represents 486 

the change glucose measured from the start of exercise, to the minimum glucose 487 

measured 4 hours after exercise, and these outcomes are connected by a dotted black 488 

line (n = 160 observations of CGM data from 20 participants across 4 study arms, 489 

whereby participants are each represented by two observations per study arm). 490 

 491 
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Figure 2. Differences in glycemic response across baseline physical fitness. Box 492 

plots represent the median and interquartile range of the data, cross symbols represent 493 

outlier values and each whisker extends to the most extreme data point that is not an 494 

outlier.  495 

* represents significant differences p<0.05 between boxplot groups as determined by an 496 

independent t-test.  ** represents significant differences p<0.05 between boxplot groups 497 

as determined by Wilcoxon rank-sum test.  ○ represents significant differences p<0.05 498 

between sensor glucose as determined by a Wilcoxon rank-sum test.  499 

(A) The slope of glucose during aerobic exercise is significantly steeper in participants 500 

with higher aerobic fitness (n = 88 observations collected from 11 participants) than 501 

participants with lower aerobic fitness (n = 70 observations collected from 9 participants) 502 

(average trend -2.2 mg/dL/min vs -1.8 mg/dL/min, p = 0.03).  503 

(B) The minimum glucose measured during aerobic exercise is significantly lower in 504 

participants with higher aerobic fitness (n = 88 observations collected from 11 505 

participants) than in participants with lower aerobic fitness (n = 70 observations 506 

collected from 9 participants) (average minimum glucose 75.9 mg/dL vs 103.1 mg/dL, p 507 

= 4.7E-9) 508 

(C) The minimum glucose measured by CGM in the 4-hrs following the start of aerobic 509 

exercise is significantly lower in participants with higher aerobic fitness (n = 88 510 

observations collected from 11 participants) than in participants with lower aerobic 511 

fitness (n = 70 observations collected from 9 participants) and (average minimum 512 

glucose 70.4 mg/dL vs 85.4 mg/dL, p = 3.3E-5) 513 
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(D) Interquartile range of sensor glucose obtained from participants during in-clinic 514 

study days 1 and 4.  Participants with higher aerobic fitness exhibit significantly lower 515 

glucose during activities of daily living and aerobic exercise, and in the nighttime 516 

following exercise (p < 0.05).  The lower aerobic fitness group is represented by grey 517 

area (n = 72 sensor traces collected from 9 participants).  The higher aerobic fitness 518 

group is represented by magenta area (n = 88 sensor traces collected from 11 519 

participants).  During the in-clinic exercise study visits, activities of daily living were 520 

performed starting at 10 am, and exercise at 70% VO2max was performed at 2 pm.  The 521 

number of sensor traces from 9 pm – 12 am is lower for both groups (lower fitness, n = 522 

36, higher fitness, n = 44), representing data only from study day 1, whereas 523 

participants exited the clinical study on day 4 and overnight sensor data is therefore not 524 

available.  525 

(E) Interquartile range of sensor glucose across the entire 4-day study.  The lower 526 

aerobic fitness group is represented by grey area (n = 36 sensor traces collected from 9 527 

participants).  The higher aerobic fitness group is represented by magenta area (n = 44 528 

sensor traces collected from 11 participants). 529 

 530 

Figure 3. Consensus Error Grid for models predicting minimum glucose at the 531 

end of exercise.  The regions of the consensus error grid indicate the clinical impact of 532 

prediction errors.  Observations that land in regions A and B indicate safe predictions.  533 

Observations that lay in regions C, D, and E may result in clinical errors such as missed 534 

hypoglycemia, or false positive hypoglycemia that results in excessive carbohydrate 535 
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intake.  The percentage of observations falling within each region is listed below each 536 

figure. 537 

(A) Population MARS model validation (n = 158 observations of exercise data collected 538 

from 20 participants) without including prior exercise history.  539 

(B) The MARS model predictions after personalization of population model coefficients 540 

(n = 158 observations of exercise data collected from 20 participants). 541 

(C) The predictions of the MARS model that incorporates exercise history features, with 542 

additional personalization of the model coefficients (n = 158 observations of exercise 543 

data collected from 20 participants). 544 

 545 
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Tables 546 
 547 

Participant 
ID 

Mean 
Glucose 

Drop During 
Exercise 
[mg/dL] 

Standard 
Care Arm 

Predictive 
Low-Glucose 

Suspend 
Arm 

Single-
hormone AP 

Arm 

Dual-
hormone AP 

Arm 

Average 
difference 

measured during 
identical 

exercise [mg/dL] 

Ex modelb 

MARE [%] 

Ex modelb, 

RMSE [mg/dL] 

4-hr modelc  

MARE [%] 
4-hr modelc 

RMSE [mg/dL] 

1a -92.4 ± 24.0 -74.5 ± 10.6 -79.5 ± 3.5 -122.0 ± 12.7 -93.5 ± 31.8 20.8 11.9 8.5 13.8 10.0 

2 a -100.3 ± 23.4 -107.0 ± 1.4 -122.0 ± 1.4 -106.5 ± 12.0 -65.5 ± 12.0 9.5 17.6 13.8 24.9 18.5 

3 -41.4 ± 37.2 -61.0 ± 39.6 -54.0 ± 25.5 11.0 ± 9.9 -61.5 ± 3.5 27.8 11.7 15.9 26.1 33.5 

4 a -91.1 ± 47.6 -132.0 ± 58.0 -93.0 ± 35.4 -93.5 ± 57.3 -46.0 ± 22.6 61.3 19.1 16.9 17.9 13.1 

5 a -104.1 ± 28.4 -74.0 ± 25.5 -105.0 ± 25.5 -110.0 ± 36.8 -127.5 ± 4.9 32.8 22.7 21.4 25.3 18.8 

6 -118.5 ± 48.1 -119.5 ± 13.4 -127.5 ± 91.2 -96.5 ± 57.3 -130.5 ± 54.4 76.5 24.2 41.9 21.9 30.6 

7 a -83.6 ± 54.4 -79.5 ± 46.0 -109.5 ±102.5 -43.5 ± 10.6 -101.8 ± 52.0 74.6 10.2 8.0 10.5 8.4 

8 a -101.1 ± 39.1 -145.5 ± 48.8 -106.5 ± 20.5 -86.0 ± 5.7 -66.5 ± 31.8 37.8 23.5 20.1 18.3 15.2 

9 a -86.6 ± 56.4 -37.3 ± 34.3 -65.0 ± 56.6 -111.5 ± 61.5 -132.5 ± 53.0 72.6 17.1 17.2 33.1 43.2 

10 a -97.8 ± 50.0 -71.0 ± 2.8 -74.5 ± 101.1 -126.5 ± 29.0 -119.0 ± 36.8 60.0 28.9 35.0 15.7 28.9 

11 -94.4 ± 33.9 -95.5 ± 14.8 -93.0 ± 63.6 -106.5 ± 54.4 -82.5 ± 14.8 52.3 23.5 24.6 22.8 23.0 

12 a -55.4 ± 26.7 -20.8 ± 15.2 -66.0 ± 22.6 -83.0 ± 5.7 -52.0 ± 7.1 17.9 22.1 41.0 17.8 21.3 

13 -36.0 ± 23.1 -9.0 ± 2.8 -48.0 ± 15.6 -27.0 ± 18.4 -60.0 ± 9.9 16.5 16.3 15.1 13.0 12.4 

14 -112.6 ± 42.8 -98.0 ± 46.7 -102.0 ± 65.1 -97.8 ± 35.7 -152.5 ± 29.0 62.4 19.5 24.6 19.3 18.5 

15 -88.1 ± 36.7 -104.5 ± 82.7 -102.5 ± 17.7 -73.0 ± 11.3 -72.5 ± 16.3 45.3 16.1 15.9 16.1 16.8 

16 a -77.1 ± 33.9 -57.5 ± 17.7 -45.0 ± 25.5 -91.5 ± 27.6 -114.5 ± 16.3 30.8 23.4 20.4 19.8 21.0 

17 -69.4 ± 38.0 -23.0 ± 19.8 -111.5 ± 0.7 -79.5 ± 17.7 -63.5 ± 36.1 26.3 22.0 28.1 22.8 32.0 

18 -97.0 ± 48.7 N/A -115.5 ± 2.1 -135.0 ± 4.2 -40.5 ± 43.1 23.3 19.4 23.5 39.0 53.5 

19 -74.0 ± 23.6 -78.0 ± 25.5 -68.0 ± 12.7 -95.0 ± 15.6 -55.0 ± 33.9 31.0 20.0 30.1 25.3 29.0 

20 a -63.0 ± 54.0 -140.0 ± 21.2 -54.5 ± 20.5 -13.0 ± 33.9 -44.5 ± 26.2 36.0 20.1 20.1 22.5 19.0 

Mean ± Std -84.2 ± 43.26 -80.4 ± 46.6 -87.1 ± 42.9 -84.3 ± 44.2 -84.1 ± 40.7 40.8 ± 20.9 19.5 ± 4.7  22.1 ± 9.4 21.3 ± 6.8 23.3 ± 11.3 

 548 
Table 1 Changes in glucose during exercise, and results of the best performing ML models to predict minimum 549 
glucose in the 4 hours following exercise.  a indicates participants with higher aerobic fitness.  b indicates the 550 
performance of the model designed to predict minimum glucose at the end of exercise, specifically, the MARS model 551 
designed with exercise history and adaptive personalization.  c indicates the performance of the model designed to predict 552 

Jo
urn

al 
Pre-

pro
of



28 
 

minimum glucose within 4-hours following the start of exercise, specifically, the MARS model that underwent adaptive 553 
personalization.  Participant 18 SMBG data was not available for the standard-care arm, and is not reported. 554 
  555 
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 Population Model  Personalized Model, 
Coefficient 
Adaptation 

 Comparison 
between 
population 
model and 
personalized 
model 

 

 RMSE (MAE) [mg/dL] [Sensitivity, Specificity] 
(Accuracy) [%] 

RMSE (MAE) [mg/dL] [Sensitivity, Specificity] 
(Accuracy) [%] 

Δ MAE [%] Δ Accuracy [%] 

Predicting Minimum Glucose 
at the end of Exercise 

      

MARS Model       

Training, 16-fold CV 24.1  (19.2) [73, 67] (69) -- -- -- -- 

Validation, Holdout Set 26.5  (23.4) [50, 86] (75) 23.1  (19.6) [70, 86] (81) -16.2 + 8.3 

Validation, 20-fold CV 24.6  (20.0) [63, 63] (67) 23.0  (18.1) [61, 78]  (78) - 9.5 + 16.1 a 

MARS Model + Exercise History Features 

Training, 16-fold CV 23.1  (18.2) [75, 65] (68) -- -- -- -- 

Validation, Holdout Set 18.7  (14.3) [73, 86] (81) 19.7 (15.8) [73, 95] (88) + 10.1 + 7.7 

Validation, 20-fold CV 22.6  (17.6) [66, 69] (70) 22.1  (17.5) [51, 83] (77) - 0.6 + 10.1 a 

AR Model: Population Model b 

Training, 16-fold CV 28.8  (22.7) [71, 94] (83) -- -- -- -- 

Validation, Holdout Set 32.8  (28.6) [59, 87] (72) 27.6  (23.3) [59, 87] (72) -18.7 + 0 

Validation, 20-fold CV 29.6  (23.8) [71, 91] (81) 27.7  (22.0)  [76, 90] (83) - 7.4 + 3.1 

Logistic Regression       

Training, 16-fold CV -- [66, 67] (66) -- -- -- -- 

Validation, Holdout Set -- [73, 76] (75) -- [73, 90] (84) -- + 12.5 

Validation, 20-fold CV -- [64, 56] (61) -- [68, 61] (70) -- + 15.5 a 

Predicting Minimum Glucose 
4 hours after exercise 

      

MARS Model b       

Training, 16-fold CV 25.8  (19.7) [67, 68] (68) -- -- -- -- 

Validation, Holdout Set 25.7  (21.6) [18, 76] (56) 21.5  (16.3)  [33, 96] (78) - 24.8 + 38.9 

Validation, 20-fold CV 25.1 (20.1) [62, 51] (56) 23.3  (18.3) [56, 70] (68) - 9.0 * + 21.4 a 

MARS Model + Exercise History Features b 

Training, 16-fold CV 24.8  (18.6) [79, 61] (69) -- -- -- -- 

Validation, Holdout Set 30.7  (26.1) [29, 61] (47) 23.0  (16.0) [56, 96] (84) -38.8 + 80.0 

Validation, 20-fold CV 26.3  (21.1) [74, 52] (57) 23.9  (18.2) [57, 70] (69) - 13.8  + 20.0 

Logistic Regression b  

Training, 16-fold CV -- [57, 72] (65) -- -- -- -- 

Validation, Holdout Set -- [32, 77] (50) -- [53, 92] (69) -- + 37.5 

Validation, 20-fold CV -- [63, 50] (58) -- [64, 74] (70) -- + 20.4 a 

Table 2 Comparing the effect of adaptation on the performance of models designed to predict exercise-related 556 
changes in glucose.  Values represent the mean performance across participants.  Training is performed with data from 557 
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n = 16 participants, while the holdout set includes data from n = 4 participants.  The 20-fold validation includes data from 558 
all n = 20 participants.  a indicates that the significance p < 0.05 determined Wilcoxon signed-rank test for paired, non-559 
parametric data comparing the change in error or accuracy on a per-participant basis.  b These models return predicted 560 
CGM, not SMBG values.  The AR model is only designed to predict glucose approximately 43.2 minutes after the start of 561 
exercise, and the results for a 4 hour prediction horizon are not shown.  562 
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 563 
 564 

  Accuracy [%]  MARE [%]  

Model Personalization 
Lower VO2max 

n = 70 obs 
Higher VO2max 

n = 88 obs 
Lower VO2max 

n = 70 obs 
Higher VO2max 

n = 88 obs 
Predicting minimum glucose 
during exercise 

 
    

MARS Model Population 73 65 23 20 

 Adaptation 84 72 20 20 

MARS Model + Exercise History Population 74 65 19 19 

 Adaptation 86 70 19 20 

AR Model Population 88   75 a 16 38 a 
 Adaptation 85 82 16 34 a 
Logistic Regression Population 65 55 -- -- 

 Adaptation 72 65 -- -- 

Predicting minimum glucose in 
the 4 hours following exercise 

 
    

MARS Model Population 57 55 25 21 

 Adaptation 70 69 22 20 

MARS Model+ Exercise History Population 63 52 25 24 

 Adaptation 69 68 23 20 a 
Logistic Regression Population 58 56 -- -- 

 Adaptation 72 63 -- -- 

Table 3 Comparing the effect of aerobic fitness on the performance of models designed to predict exercise-565 
related changes in glucose.  a indicates that the significance p < 0.05 as determined by Wilcoxon rank-sum test for non-566 
parametric data, comparing algorithm performance on participants with higher aerobic and lower aerobic fitness rankings. 567 
 568 
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 569 

STAR METHODS 570 

 571 

RESOURCE AVAILABILITY 572 

Lead Contact 573 

Further information and requests for data and code should be directed and will be 574 

fulfilled by the lead contact, Peter G. Jacobs (jacobsp@ohsu.edu). 575 

 576 

Materials Availability 577 

This study did not generate unique reagents or materials. 578 

 579 

Data and Code Availability 580 

 De-identified human participant research data used in this analysis was granted 581 

for this analysis, and further data sharing is restricted and is not publically 582 

available.  No standardized data types are reported in this manuscript.  Data 583 

requests can be submitted to the lead contact.  These requests are assessed on 584 

a case-by-case basis and require completion and signature of a sharing 585 

agreement, as defined by the Oregon Health & Science University Institutional 586 

Review Board (OHSU IRB).  Summary statistics have been reported in the main 587 

manuscript. 588 

 The algorithms designed in this manuscript are listed in the key resources table.  589 

The code used to perform the formal analysis of restricted participant data is 590 

available from the lead contact upon reasonable request.  591 

 Any additional information required to reanalyze the data reported in this paper is 592 

available from the lead contact upon request. 593 

 594 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 595 

 596 

Human Subjects and Study Setting 597 
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This analysis was performed upon approval of OHSU Institutional Review Board, study 598 

number 00019659.  This analysis utilized data obtained during a previous clinical study 599 

(Castle et al., 2018).  The data was collected from 20 adults with type 1 diabetes (N = 600 

20, 14 F, Age 34.5 ± 4.7y, duration diabetes 19.7 ± 8.6 y, BMI 26 ± 5.7, HbA1C 7.5 ± 601 

0.8, VO2max 37.1 ± 9.6) who participated in a 4-arm study.  Each study arm consisted 602 

of 4 days of either (1) single-hormone automated insulin therapy, (2) dual-hormone 603 

(insulin and glucagon) automated therapy, (3) predictive low glucose suspend CGM-604 

augmented pump therapy, or (4) standard of care CGM-augmented pump therapy.  605 

Participants visited the clinic on days 1 and 4 of each study arm.  During in-clinic study 606 

visits, participants consumed a self-selected breakfast, lunch and dinner and performed 607 

aerobic exercise in the afternoon.  Each participant consumed the same meals at the 608 

same time and performed the same physical activity at the same time for each of the 8 609 

in-clinic visits (4 arms x 2 days).  Participants underwent VO2max testing using a 610 

modified Bruce protocol while wearing a gas-collecting mask. They performed aerobic 611 

exercise with graded work intensity every 3 minutes until volitional exhaustion or plateau 612 

of oxygen consumption.  During the study, aerobic exercise was performed at 70% 613 

VO2max and was designed to last for 40 minutes. Participants sometimes exercised for 614 

less than 40 minutes if for example, their glucose dropped below 70 mg/dL.  615 

Participants sometimes exercised for longer than 40 minutes if they needed to stop in 616 

the middle of exercise for some reason.  The average length of exercise across all 617 

participants was 43.2 ± 14 minutes.  Participant accelerometer and heartrate data were 618 

obtained using ZephyrLife BioPatch devices (Zephyr, Annapolis, MD).  The automated 619 

insulin and glucagon delivery systems were controlled using a custom exercise-aware 620 
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algorithm (Jacobs et al., 2015) installed on a Google Nexus smart phone. This 621 

automated delivery system wirelessly communicated the t:slim pumps (Tandem, San 622 

Diego, CA) and G5 CGM sensors (Dexcom, San Diego, CA) via Bluetooth.  During the 623 

control arm, participants used their own insulin pumps.  The insulin pumps in this study 624 

were filled with aspart insulin (Novo Nordisk, Plainsboro, NJ).  This secondary analysis 625 

utilized participant data obtained from G5 devices, t:slim devices, ZephyrLife BioPatch 626 

devices and self-monitored blood glucose (SMBG) Contour Next devices (Bayer, 627 

Whippany, NJ). 628 

 629 

METHOD DETAILS 630 

 631 

Model Input Features and Outcome Measures 632 

The participant data collected by the study devices during each of the in-clinic exercise 633 

sessions was processed for predictive exercise features and glucose outcomes 634 

following exercise (N = 160 exercise sessions).  No observations were excluded from 635 

analysis on the basis of artifacts in the time series data, such as noise in CGM data due 636 

to calibration or movement, or signal dropout.  The input features derived from the 637 

clinical data are defined in Table S1.  Additional features describing participant exercise 638 

history are defined in Table S2.  The final input features for each model were 639 

determined from Greedy sequential variable selection (Whitney, 1971), or reproduced 640 

as described in previous publications (Breton et al., 2018; Romero-Ugalde et al., 2019).  641 

The algorithms were trained to predict (1) the minimum glucose from the start of 642 

exercise to the end of exercise as measured using self-monitored blood glucose 643 
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(SMBG) or continuous glucose monitor (CGM), and (2) minimum glucose 4 hours 644 

following the start of exercise as measured by CGM.  SMBG measurements were 645 

measured by all participants at the start and end of exercise per study protocol, 646 

however SMBG was not always measured in the 4 hour period following exercise 647 

therefore CGM is used for the 4-hour prediction model.  Participant age, sex, and 648 

VO2max were used to classify each participant into categories of higher (including good, 649 

excellent, and superior VO2max) aerobic fitness or lower (including very poor, poor and 650 

fair VO2max) aerobic fitness, as defined by the American Society of Sports Medicine 651 

VO2max aerobic fitness norms (American College of Sports Medicine’s Complete Guide 652 

to Fitness & Health by Barbara Bushman, 2017).  653 

 654 

Development of the Population Models 655 

Three machine learning models were investigated to predict glucose outcomes during 656 

aerobic exercise.  The first model is a MARS model was designed to predict minimum 657 

blood glucose during exercise, and minimum CGM-measured glucose in the 4 hours 658 

following exercise.  The second model is a logistic regression model designed to predict 659 

hypoglycemia during exercise, and in the 4 hours following exercise.  The third model 660 

developed was an AR model to predict CGM values approximately 43.2 minutes after 661 

the start of exercise.  To investigate if exercise history is predictive of future glucose 662 

trends, a fourth model, a personalized MARS model was designed that incorporates 663 

participant exercise history features as inputs to the model (Table S2).  Each population 664 

model was designed using a training set, which consisted of data from 16 participants.  665 

The population machine learning models were trained using leave-one-participant-out 666 
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cross-validation, meaning the input features and model parameters were selected using 667 

fifteen of the participants in the training set, and then performance was evaluated on the 668 

sixteenth held-out participant.  The machine learning models were then evaluated on 669 

data from a holdout set, which consisted of data from the 4 participants who were not 670 

used in the training set.  These 4 holdout participants were sampled to ensure that they 671 

were representative of the population and had the same frequency of hypoglycemia and 672 

minimum glucose as the training set.  The general predictive accuracy of the models 673 

were also evaluated using a 20-fold leave-one-participant-out cross-validation, where 674 

the model parameters were retrained on 19 participants and the model performance 675 

evaluated on 1 held-out participant (Figure S1). 676 

 677 

MARS Model to Predict Low SMBG after Exercise 678 

A MARS model implements a linear regression framework that also considers the 679 

numerical range of the predictors.  Each input feature (Table S1) was processed into 680 

paired hinge-functions, representing the feature values above and below a specific 681 

hinge point (i.e., SMBG values above and below a hinge point of 150 mg/dL are 682 

considered separate variables with separate model coefficients).  Candidate hinge 683 

points for a given feature were determined by sorting observations within a feature and 684 

selecting every 5th value for efficiency. The optimal hinge points were determined from 685 

the set of candidate hinge points during supervised training of the algorithm.  Next, 686 

Greedy sequential variable selection (Whitney, 1971)  was used to iteratively identify 687 

optimal hinge-functions to predict minimum glucose during exercise.  The MARS model 688 

coefficients were designed using a weighted regression; this approach places a penalty 689 
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on MARS model misestimation of observations with glucose < 70 mg/dL.  This 690 

essentially minimizes predictive error as well as improves sensitivity and specificity of 691 

the algorithm to detect hypoglycemia.  The final model structure used to predict the 692 

minimum glucose during aerobic exercise is shown in equation (1).  The model 693 

coefficients (in this case, 0, 1, 2, and 3) along with the hinge points are solved for 694 

each short-term and long-term prediction horizon model separately during model 695 

training. 696 

 697 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒698 

=   𝛽0 +  𝛽1 ∗ max(0, 𝐶𝐺𝑀𝑆𝑡𝑎𝑟𝑡 𝑜𝑓 𝐸𝑥𝑒𝑟𝑐𝑖𝑠𝑒 − 254) [
𝑚𝑔

𝑑𝐿
]699 

+  𝛽2 max(0, 𝐶𝐵𝐺𝑆𝑡𝑎𝑟𝑡 𝑜𝑓 𝐸𝑥𝑒𝑟𝑐𝑖𝑠𝑒 − 124) [
𝑚𝑔

𝑑𝐿
]  700 

+  𝛽3 max(0, 𝐻𝑅10 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 𝑝𝑟𝑖𝑜𝑟 𝑡𝑜 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 − 97.15) [𝐵𝑃𝑀]701 

+  𝛽4 𝐶𝐺𝑀 𝑇𝑟𝑒𝑛𝑑25 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 𝑝𝑟𝑖𝑜𝑟 [

𝑚𝑔
𝑑𝐿

𝑚𝑖𝑛
] 702 

Equation 1 703 

 704 

AR Model to Predict CGM Following Exercise 705 

Romero-Ugalde et al. developed predictive models to forecast CGM measurements 706 

during aerobic exercise (Romero-Ugalde et al., 2019).  We used the methods and 707 

features described by Romero-Ugalde et al. to reproduce the population AR model that 708 

utilizes CGM data.  In this approach, the CGM data is smoothed using a 1st-order simple 709 

moving average, whereby data-at time t is averaged with the preceding data at time t-5. 710 
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We found that the AR model using only CGM data and no exogenous inputs performed 711 

better than when including exogenous inputs. The AR with exogenous inputs (ARX) 712 

described in Romero-Ugalde et al. utilized raw activity data metrics from a different 713 

activity sensor than the one used in our study, and this may explain why they got better 714 

performance using an ARX model than using an AR model.  We present the design and 715 

results of the AR model that achieved the highest accuracy during model validation.  716 

The exercise sessions in our dataset lasted on average for 43.2 ±14 minutes, therefore 717 

the AR model was designed to predict CGM at approximately 43.2 minutes following the 718 

start of exercise.  The final model structure is shown below in equation (2) where the 719 

coefficients 0, 1, 2, and 3 are solved for during model training. 720 

 721 

𝐶𝐺𝑀 40 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 𝑎𝑓𝑡𝑒𝑟 𝑡ℎ𝑒 𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 722 

=  𝛽0 +  𝛽1𝑆𝑚𝑜𝑜𝑡ℎ𝐶𝐺𝑀𝑆𝑡𝑎𝑟𝑡 𝑜𝑓 𝐸𝑥𝑒𝑟𝑐𝑖𝑠𝑒 [
𝑚𝑔

𝑑𝐿
]                          723 

+  𝛽2𝑆𝑚𝑜𝑜𝑡ℎ𝐶𝐺𝑀10 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 [
𝑚𝑔

𝑑𝐿
]                 724 

+  𝛽3𝑆𝑚𝑜𝑜𝑡ℎ𝐶𝐺𝑀20 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 [
𝑚𝑔

𝑑𝐿
] 725 

Equation 2 726 

 727 

Logistic Regression to Predict Hypoglycemia 728 

Breton et al. published a logistic regression model to predict hypoglycemia during 729 

exercise.  We used the identical variables described by Breton et al. (Breton et al., 730 

2018) to train a population logistic regression model to predict the occurrence of 731 

hypoglycemia during aerobic exercise and in the 4 hours following exercise.  The inputs 732 
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to this model were the CGM at the start of exercise, the average CGM trend in the hour 733 

preceding exercise, and the ratio of the active insulin (IOB) at the start of exercise to the 734 

participant’s total daily insulin requirement (TDIR).  The participant TDIR is defined as 735 

the total insulin dosed per day on average.  The model is shown in equation (3) where 736 

the coefficients 0, 1, 2, and 3 are solved for during model training. 737 

 738 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐻𝑦𝑝𝑜𝑔𝑙𝑦𝑐𝑒𝑚𝑖𝑎739 

= 𝑙𝑜𝑔𝑖𝑡 (𝛽0 + 𝛽1𝐶𝐺𝑀𝑆𝑡𝑎𝑟𝑡 𝑜𝑓 𝐸𝑥𝑒𝑟𝑐𝑖𝑠𝑒 [
𝑚𝑔

𝑑𝐿
]                   740 

+ 𝛽2𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝐺𝑀 𝑇𝑟𝑒𝑛𝑑𝑃𝑟𝑖𝑜𝑟 𝐻𝑜𝑢𝑟 [

𝑚𝑔
𝑑𝐿

𝑚𝑖𝑛
]                                   741 

+ 𝛽3

𝐼𝑂𝐵𝑆𝑡𝑎𝑟𝑡 𝑜𝑓 𝐸𝑥𝑒𝑟𝑐𝑖𝑠𝑒

𝑇𝐷𝐼𝑅
 [

𝑈𝑛𝑖𝑡𝑠

𝑈𝑛𝑖𝑡𝑠
] ) 742 

Equation 3 743 

MARS Model Personalized with Exercise History 744 

The methods described above were used create a second personalized MARS model 745 

that incorporates exercise history from a given participant.  The model was designed by 746 

identifying the optimal features included in Table S1, and also exercise history features 747 

included in Table S2 that describe participants’ glucose dynamics during prior exercise 748 

sessions.  The population model to detect minimum CGM-measured glucose during 749 

exercise is shown below in equation (4) whereby the coefficients 0-6 were solved for 750 

each short-term and long-term prediction horizon model separately during training of the 751 

model.  752 

 753 
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𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 754 

=   𝛽0 +  𝛽1 max(0, 𝐶𝐺𝑀𝑆𝑡𝑎𝑟𝑡 𝑜𝑓 𝐸𝑥𝑒𝑟𝑐𝑖𝑠𝑒 − 254) [
𝑚𝑔

𝑑𝐿
]755 

+  𝛽2 max(0, 254 − 𝐶𝐺𝑀𝑆𝑡𝑎𝑟𝑡 𝑜𝑓 𝐸𝑥𝑒𝑟𝑐𝑖𝑠𝑒) [
𝑚𝑔

𝑑𝐿
]756 

+  𝛽3 max(0, 𝐻𝑅10 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 𝑝𝑟𝑖𝑜𝑟 𝑡𝑜 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 − 97.15) [𝐵𝑃𝑀]757 

+  𝛽4 max(0, 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝛥𝐶𝐺𝑀𝑜𝑡ℎ𝑒𝑟 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠 + 84.92) [
𝑚𝑔

𝑑𝐿
]758 

+  𝛽5 max(0, −84.92 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝛥𝐶𝐺𝑀𝑜𝑡ℎ𝑒𝑟 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠)[
𝑚𝑔

𝑑𝐿
]759 

+   𝛽6 max(0, 5.97 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝐸𝑇𝑜𝑡ℎ𝑒𝑟 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠)[𝑀𝐸𝑇] 760 

Equation 4 761 

Real-time Model Adaptation 762 

To determine the impact of adaptation on prediction accuracy, the population model 763 

parameters were adapted to each participant left-out of model training using data from 764 

the participant’s exercise observations.  Stochastic gradient descent (An overview of 765 

gradient descent optimization algorithms, Ruder, 2016)  was used to update the 766 

population model parameters using the participant’s most recent observed exercise 767 

session, and the adapted model was then used to predict the same participant’s 768 

outcomes of the next exercise session.  This adaptation procedure was repeated 769 

successively for each held-out exercise observation, updating the population model 770 

parameters over time to better reflect a held-out participant’s glucose dynamics as each 771 

exercise session was observed.  In order to determine if the order of the exercise 772 

sessions impacted prediction accuracy, the order of the 8 identical exercise sessions 773 

were shuffled four times and the adaptation procedure was repeated.  774 

 775 
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QUANTIFICATION AND STATISTICAL ANALYSIS 776 

Statistical parameter details are included here; additional parameters, including the 777 

number of observations and the precise statistical tests, are included in the figure and 778 

table legends.  Significance testing was performed on a per-participant level, df = 19, to 779 

compare the change in error and accuracy to detect hypoglycemia before and after 780 

personalization.  Normality of data was assessed using the Kolmogorov-Smirnov test to 781 

determine the appropriate statistical tests.  The differences in model error before and 782 

after personalization were evaluated using a two-tailed paired t-test for parametric data, 783 

and a two-tailed Wilcoxon signed-rank test for non-parametric data, significance level of 784 

alpha = 0.05.  The differences in glucose outcomes for participants in different physical 785 

fitness categories were evaluated using a two-tailed students t-test for parametric data, 786 

and a two-tailed Wilcoxon rank-sum test for non-parametric data, significance level 787 

alpha = 0.05.  Glucose outcomes measured during exercise for each participant was 788 

explored with a boxplot, whereby the centerline of the boxplot indicates the median 789 

measurement and box edges represent the 25th and 75th percentiles, cross symbols 790 

represent outlier values and each whisker extends to the most extreme data point that is 791 

not an outlier.  Model performance was assessed using root mean squared error 792 

(RMSE), mean absolute error (MAE), as well as the sensitivity, specificity and accuracy 793 

to detect observations with level 1 hypoglycemia (< 70 mg/dL).  Leave-4-participant-out 794 

cross-validation was used to create a receiver operating curve for each algorithm to 795 

determine the optimal predictive threshold to detect hypoglycemia.  The optimal 796 

threshold for each algorithm was then used to evaluate algorithm sensitivity, specificity, 797 

and accuracy to detect hypoglycemia for left-out participant data (Figure S1).  The 798 
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Parkes consensus error grid analysis (Parkes et al., 2000) was used to determine the 799 

clinical impact of the algorithm predictions.  Model design and assessment, and 800 

statistical analysis were performed in Matlab 2019b (MathWorks, Natick, MA).  A power 801 

analysis was performed previously for the published clinical study; a study size of 20 802 

participants was sufficient to detect a -3.3% change in % time-in-hypoglycemia and a 803 

16.3% change in % time-in-target glucose (70-180 mg/dL), for >80% power and an 804 

alpha = 0.0125 (Castle et al., 2018). 805 

  806 
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Highlights (3-4 with no more than 85 characters, including spaces) 

 People with type 1 diabetes exercised in 8 identically-designed treadmill sessions 

 Intra-person glycemic response varies even under controlled and repeated 

conditions 

 Glucose trends downward more quickly in people with higher aerobic fitness 

 Adaptive ML algorithms predict exercise-related nadir glucose with high accuracy 
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